Language Modeling and Predictive Text Entry for AAC

Keith Vertanen

vertanen@mtu.edu https://keithv.com

Overview

Language modeling

- N-gram language models
 - Motivating example: Auto-correcting keyboard
- Dasher interface
- Adapting to a user's text
- Neural network language models
- Selecting training data
- Word predictions
 - Impact of different design choices
 - Single switch interface: Nomon
- Future directions

<pre></pre>	Фь	⊕c	Øq	♥ new ● next ● need
Øf	€g	()h	()night ()i ⊘nice	()i
Ŵк		() m	⊕n	(€o €now (♥nothing)
Фр	Øq	⊕r	Øs	Øt
U Unumber	©۲	(Sw	Ø×	Øy
©z	Ø,	(b). (b), (c)! (c)?	Backspace Clear	<pre>⑦Undo n</pre>
hello my n				

Typing on small keyboards with fat fingers...

https://www.theglobeandmail.com/report-on-business/small-business/sb-managing/rim-is-cheap-but-so-what/article616857/

History:

- 1996 RIM pager (later known as Blackberry) 2007 – Release of first iPhone
- 2015 Release of first Apple Watch

Typing if you're motor-impaired...

Person typing on a physical keyboard with a mouth stick¹.

Elderly participant typing on a touchscreen keyboard².

Motor-impaired user interacting with a touchscreen interface³.

¹ https://www.maltron.com/head-mouth-stick-keyboard-info.html ² Nicolau, H. and Jorge, J. Elderly Text-Entry Performance on Touchscreen. In *Proc. ASSETS'12*.

³ Guerreiro, T., et al. Towards Accessible Touch Interfaces. In Proc. ASSETS'10.

Typing if you're visually-impaired...

Undergrad research assistant typing on a virtual keyboard while blindfolded.

Legally blind participant typing on a virtual keyboard.

Completely blind participant typing on a virtual keyboard.

Can you guess what I'm writing?

Key nearest each tap:hMore likely answer:hOther possibilities:g

haveafoddathaveagooddaygaveagooddathaveagooddathaveagooddatehaveagooddate

. . .

Scoring possible hypotheses

Based on our observed taps, we had a set of possible sentences:

haveagooddayhaveafoddatgaveagooddathaveagooddathaveagooddatehaveagodday

Q W E R To Y U I O P A S D F G H J K L C Z X C V B N M X .?123 Gapace Search

We would like the compute to **assign a score** to each sentence. This will allow us to **select the best one**, the best three, ...

Probability of an event

P(•) denotes the *probability* of some event It is a value between 0.0 and 1.0 Larger value = more likely event

P(have	a	good	day)	=	0.671
P(have	а	fod	dat)	=	0.101
P(gave	а	good	dat)	=	0.010
P(have	а	good	dat)	=	0.010
P(have	а	good	date)	=	0.004
P(have	а	god	day)	=	0.003

After assigning a probability to each sentence, we might assume the one with highest probability is what they actually wanted to write.

Conditional probability

P(A | B) denotes: probability of event A given B

P(have a good day | tap_1 , tap_2 , ... tap_{14}) = 0.671

Given I saw the user perform this sequence of 14 taps, what is the probability they wanted to write "have a good day"?

Auto-correction algorithm

Algorithm:

Search for the most probable text given the taps

Some possible input models

P(user hit key "p" | output character "p")

Deterministic: "Whatever key I hit, that is the right one"

P(user hit key "p" | output character "p") = 1.0
P(user hit key "p" | output character "o") = 0.0
P(user hit key "p" | output character "l") = 0.0

11

• • •

P(user hit key "p" | output character "z") = 0.0

Examples: Physical keyboards, some dwell keyboards or row-column scanners?

q	w	е		t	У	u	i	0	р
а	S	d	f	g	h	j	k		;
z	X	С	V	b	n	m	,	•	1
¢	Abc	ABC	123	!?#	F++				

		 		I		1	I
	-		—		 		
space	E	А		к	D	U	
т	0	1		L	G	В	
N	S	F		Υ	v	J	
н	С	Р		К	Q		
м	w	х		Z		?	

Some possible input models

P(user hit key "p" | output character "p")

<u>Adjacent</u>: "Whatever key I hit, that is probably right but it could be an adjacent key"

P(user hit key "p" | output character "p") = 0.8
P(user hit key "p" | output character "o") = 0.1
P(user hit key "p" | output character "l") = 0.1
P(user hit key "p" | output character "i") = 0.0
P(user hit key "p" | output character "k") = 0.0

• • •

P(user hit key "p" | output character "z") = 0.0

A simple input model for auto-correct

Algorithm:

Search for the most probable text given the taps

P(12|or)=0.123 P(12|ot)=0.123

```
• • •
```

```
P(12|ir)=0.097
P(12|it)=0.097
```

p(12|zy)=0.00000003
P(12|zz)=0.00000001

26²=676 possibilities

Terminology: Auto-correct vs. Word predictions

<u>Auto-correct</u>: Correcting errors made in last bit of typing

Word predictions: Guessing next word based on typing thus far

What is your n		> What is your name 🕥
"n" name new	Pressing button	on and in
qwertyuiop	above keyboard	qwertyuiop
asdfghjkl		asdfghjkl
☆ z x c v b n m ⊗		☆ z x c v b n m ⊗
123		123 🌐 🖞 space return

Training a language model

Step 1: Get a whole bunch of text

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way--in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

Training a language model

Step 2: Normalize text (some possible choices)

Convert to lowercase Remove symbols Normalize whitespace

it was the best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

Step 3: Count things up

Train a *unigram* (1-gram) word language model Count occurrences of each unique word

it was the best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

Step 3: Count things up

<u>unigram</u> <u>count</u> it 1

"it" never seen before, add to table

<u>it</u> was the best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

Step 3: Count things up

"was" never seen before, add to table

<u>unigram</u>	<u>count</u>
it	1
was	1

it <u>was</u> the best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

Step 3: Count things up

"times" (fast forward)

<u>unigram</u>	<u>count</u>
it	1
was	1
the	1
best	1
of	1
times	1

it was the best of <u>times</u> it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

Step 3: Count things up

"it" was already added, increment its count

unigramcountit2was1the1best1of1time1

it was the best of times <u>it</u> was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

Step 4: Calculate probabilities

Finished going through text, how probable is each word?

total = 119 words

P(word) = count / total

it was the best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

<u>unigram</u>	<u>count</u>	<u>prob</u>
the	14	0.118
of	12	0.101
was	11	0.092
it	10	0.084
we	4	0.034
age	2	0.017
us	2	0.017
had	2	0.017
going	2	0.017
were	2	0.017
its	2	0.017
for	2	0.017
times	2	0.017
season	2	0.017
•••		
or	1	0.008
sum	119	1.000

Step 5: Use the language model

Helps decide between competing text hypotheses

unignam	count	nnoh
		<u>prob</u>
the	14	0.118
of	12	0.101
was	11	0.092
it	10	0.084
we	4	0.034
age	2	0.017
us	2	0.017
had	2	0.017
going	2	0.017
were	2	0.017
its	2	0.017
for	2	0.017
times	2	0.017
season	2	0.017
•••		
or	1	0.008
sum	119	1.000

Language modeling for the win???

Assume QWEBTYULOP	<u>unigram</u> the	<u>count</u> 14 12	<u>prob</u> 0.118 0.101
	was	12	0.092
	it	10	0.084
	we	4	0.034
- · · · · · · · · · · · · · · · · · · ·	age	2	0.017
	us	2	0.017
.?123 space Search	had	2	0.017
	going	2	0.017
What word comes after:	were	2	0.017
"of" most probable	its	2	0.017
i would like a big helping 🥌	for	2	0.017
"us" makes sense, but unigram votes "of"	times	2	0.017
can you please help - Broblem 1. Sixed context length	season	2	0.017
Problem 1: Fixed context length	• • •		
i will go either to the morning 👉 Need even longer context!	or	1	0.008
"id" makes sense, but never observed	sum	119	1.000
The ego superego and - Problem 2: Sparsity			2

Bigram word language model

Step 3 (revisited): Count things up

Train a *bigram* (2-gram) word language model An n-gram language model, here n=2 Count all contiguous pairs of words

<u>it was</u> the best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

<u>bigram</u>	<u>count</u>
it was	1

Bigram word language model

Step 3 (revisited): Count things up

Train a *bigram* (2-gram) word language model An n-gram language model, here n=2 Count all contiguous pairs of words

it <u>was the</u> best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

<u>bigram</u>	<u>count</u>
it was	1
was the	1

Using bigram word language model

What comes after:

can	you	send	me	the	?
-----	-----	------	----	-----	---

P(next-word | the) = ???

11 choices, but most are bad

More training data? Definitely a good idea!

Longer context length? 3-gram, 4-gram, 5-gram, ...

send me the present send me the email

Need 4-gram or longer language model to see "send"

<u>big</u> the the the the the the	<u>ram</u> age epoch season best other period present spring	prob 0.017 0.017 0.017 0.008 0.008 0.008 0.008 0.008	<u>bigram</u> was the it was age of going direct were all all going times it season of	<u>count</u> 10 10 2 2 2 2 2 2 2 2 2	prob 0.085 0.085 0.017 0.017 0.017 0.017 0.017 0.017
the the the	superlative winter worst	0.008 0.008 0.008	epoch of the age we had	2 2 2	0.017 0.017 0.017
Bi	grams starting w	ith "the"	we were of times the season insisted on	2 2 2 1	0.017 0.017 0.017 0.017
			sum	118	1.000

Full table of bigrams

Scaling up: Bigger word language models

• Training details

- Project Gutenberg: 1.2B words of text
- 100K word vocabulary

n-gram size	Compressed size (MB)	Total n-grams (M)	Train time (mins)	Train memory (GB)
1-gram	0.5	0.1	4	0.03
2-gram	96	19	9	0.7
3-gram	918	158	23	6
4-gram	3,767	531	49	25
5-gram	8,827	1,123	99	63
6-gram	15,620	1,837	203	115
7-gram	23,609	2,586	410	176

Using large 3-gram word language model

What comes after: <u>3-gram</u> me the most most frequent can you send me the [?] me the truth me the other me the whole P(next-word | me the) = ??? me the same me the honour me the way me the story me the first me the more me the greatest me the best me the money me the next me the following me the honor less frequent

. . .

Top 3-grams starting "me the" (5408 total)

Using large 4-gram word language model

What comes after:

can you send me the ?

P(next-word | send me the) = ???

4-gram send me the money most frequent send me the letter send me the name send me the first send me the necessary send me the bill send me the manuscript send me the means send me the account send me the balance send me the book send me the latest send me the length send me the most send me the names send me the news less frequent . . .

Top 4-grams starting "send me the" (181 total)

Using large 5-gram word language model

What comes after:	<u>5-gram</u>
	you send me the length most frequent
can you send me the [?]	you send me the baptismal
	you send me the green
P(next-word you cond me the) = 222	you send me the address
r(next-word you send me the) = :::	you send me the answers
	you send me the article
	you send me the customary
	you send me the fifty
	you send me the hull
	you send me the manuscript
	you send me the money
	you send me the name
	you send me the proper
	you send me the register
	you send me the right 🛛 🖡
	vou send me the six less frequent

5-grams starting "you send me the" (16 total)

Same idea, but with characters...

Step 3 (revisited): Count things up

Example: bigram (2-gram) *character* language model Sweep a 2 character window through the text

it was the best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

Bigram character language model

Step 3 (revisited): Count things up

<u>bigram</u>	<u>count</u>
lit	1

"it" never seen before Add to table

<u>it</u> was the best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only

Bigram character language model

Step 3 (revisited): Count things up

"t_" never seen before Add to table (using _ to denote space)

i <u>t</u> was the best of times it was the worst of times it was the
age of wisdom it was the age of foolishness it was the epoch of
belief it was the epoch of incredulity it was the season of
light it was the season of darkness it was the spring of hope
it was the winter of despair we had everything before us we had
nothing before us we were all going direct to heaven we were
all going direct the other way in short the period was so far
like the present period that some of its noisiest authorities
insisted on its being received for good or for evil in the
superlative degree of comparison only

bigra	<u>m</u> <u>count</u>	
it	1	
t_	1	

Bigram character language model

Step 4: Calculate probabilities	<u>bigram</u> e_	<u>count</u> 29
Final counts on this tiny text (sorted by count) Calculate probabilities as with word model	_w s_ t_ th _t	21 20 19 19 18 16
it was the best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only	_o he _i it as f_ of wa in re 	16 15 14 13 13 12 12 11 10

592

sum

Using bigram character language model

	<u>bigram</u>	<u>count</u>	<u>prob</u>
What comes after:	•••		
	e_	29	0.049
he needs to be educate ?	es	9	0.015
	er	8	0.014
P(next-char e) - 222	ea	3	0.005
P(next-char e) = rrr	ec	3	0.005
	ed	3	0.005
	ef	3	0.005
	ei	2	0.003
	en	2	0.003
	ер	2	0.003
	ev	2	0.003
	ee	1	0.002
	eg	1	0.002
	el	1	0.002

Bigrams starting with letter e

. . .
Example of character language modeling: Dasher

Dasher

- Write by navigating through nested letter boxes
 - Via mouse, eye/head tracker, buttons, touchscreen, ...
 - Box size based on letter's probability under a character LM
- Anything can be written (but unlikely text takes longer)

Steve Saling showing off his Dasher front-facing screen.

David MacKay (inventor of Dasher) writing using an eye-tracker.

Ward, D. et al. Dasher - a Data Entry Interface Using Continuous Gestures and Language Models. In Proc. UIST 2000.

Entering "h" box writes that letter.

Dasher now strongly predicts letters that often occur after "Th".

Entire words like "There" and phrases like "This is" are visible.

You can still write "Theta" if you really want...

Letter "t" is still there.

Just navigate towards where it appears in the alphabet.

You can still write "Theta" if you really want...

Letters "t" through "x" about the same size.

Language model's training data lacks examples of words like "Theta" or "Theurgist".

You can still write "Theta" if you really want...

Dasher v5 demo

https://github.com/dasher-project/dasher/releases

Dasher: Some details

• Free and open source

- Main website: <u>http://www.inference.org.uk/dasher/</u>
- Latest version (v5): <u>https://github.com/dasher-project/dasher/releases</u>
- Google group: dasher-users

• Re-implentation project (Dasher v6):

- <u>https://dasher-site.netlify.app/</u>
- Complete rewrite using modern technologies
- Improved user interface, documentation, ...
- Separate and flexible language modeling layer
 - <u>https://github.com/google-research/mozolm</u>

Dasher: Some details

- Adaptive language model
 - Prediction by Partial Match (PPM)
 - Default: conditions on previous 5 characters
 - Initial training data: 300K characters of text from various sources
 - Adapts as you write
- Supports many languages
 - ~50 European, Asian, African, and Semitic languages
- Supports many access methods
 - Mouse, eye tracker, header tracker, touchscreen,
 - 1 or more buttons, ...

Writing in Korean in Dasher.

Dasher: User study

Dasher vs. Eye-typing

- 12 users, without motor impairment
- Users adjustable dwell time
 - Started at 1000ms
 - By end of study, participants averaged 800ms
- Nine 15-minute sessions with each interface
- Wrote short memorable sentences

Participant using the Dasher interface controlled by a Tobii P10 eye-tracker.

Rough, et al. An Evaluation of Dasher with a High-Performance Language Model as a Gaze Communication Method. In *Proc. AVI 2014*.

Dasher: User study results

Participants' entry rate using Dasher and Eye-typing over 9 sessions. Error bars are 95% confidence intervals.

Dasher: Language model experiment

- How important is an adaptive language model?
 - Study interface: used a static 10-gram language
 - Trained on 3.1B characters from Twitter
 - Model pruned to a compressed size of 39MB
 - Compare against **Dasher's PPM model** (order 5, like a 6-gram model)
 - 300K training character
 - With and without adaptation
- Metric: *perplexity*
 - How many likely choices for the next character / word?
 - E.g. random sequence of numbers has a per-character perplexity of 10
 - Lower perplexity is better
 - Measured on 1,347 sentences written by Enron employees on Blackberries

Dasher: Language model experiment results

Average perplexityPPM, non-adaptive5.6PPM, adaptive4.6

PPM, adaptive4.6Static Twitter LM4.2

(Lines represent 100 sentence moving average)

Learning from a user's writing

- Language model adaptation / personalization
 - Could learn words they commonly use (perhaps ones unique to the user)
 - Could learn a user's common n-grams
 - Hopefully makes auto-correct or word-predictions better
- Metric: keystroke savings
 - Potential keystrokes saved by a hypothetical user
 - Utilizing some number of **word predictions slots**
 - Higher keystroke savings is better
 - Example:
 - Typing "What" plus space = 5 keystrokes
 - Typing "W" and selection prediction = 2 keystrokes
 - Keystroke savings = 60%

W \bigcirc "W" We What qwertyu i o p g h j s d f k I a c v b n m 仑 Z X $\langle X \rangle$ Ŷ 123 space return

Impact of language model adaption

Computational experiment with unigram cache model

- Used sent email of 45 Enron employees, e.g.:
 - "I have to tell you, you were a hit at the party the other night. People are talking. How are you today?"
- Primed on a user's first 30 days of emails, tested on subsequent days
- Simulated noisy typing on a touchscreen keyboard

,																				
	C	כ	V	V	E	Ξ	F	२	٦	Γ	١	1	ι	J			C)	F	C
		ŀ	1	S	3	Ľ)			C	£	ŀ	4	ļ	J	ł	<	L	_	
				Z	Z	>	<	Ċ	2	١	/	E	3	٢	١	Ν	Λ			

Model	Word error rate	Keystroke savings
No language model	38.4%	-
Background LM only	5.7%	42.1%
Uniform cache adaptation	4.6%	45.7%
Decaying cache adaptation	4.6%	45.8%

Fowler, A. et al. Effects of Language Modeling and its Personalization on Touchscreen Typing Performance. In *Proc. CHI 2015*.

Language model adaption: Open questions

What is actual impact on users?

- Perplexity and keystroke savings are *intrinsic* evaluations
 - Allows comparison of many possible models or algorithms
 - But do gains actually result in improved user performance?
- We need *extrinsic* evaluations
 - In an actual interface, does it improve entry rate, error rate, effort, satisfaction?
 - But this is a hard study to run: longitudinal evaluation in a real-world setting

• Performance on actual AAC user text

- May exhibit different characteristics than Enron employees
- Impact of more advanced algorithms
 - Unigram cache is a pretty simple model
 - Context-awareness: emailing is different than talking

Problems with n-gram language models

- Fixed context length: Only sees previous n-1 words
 - Longer context increases training cost and model size
 - Last n-1 words can't really model syntax and semantics
 - Possible fixes: Distributed training, model pruning, more complex models

I agree with everything in this except the dog park part. You shouldn't take your puppy to a park until it is fully vaccinated. Puppies especially are susceptible to Parvo.

Three sentence passage extracted from Reddit.

- **Sparsity:** Despite lots of data, we haven't seen everything!
 - Words treated independently: democracy ≠ dog ≠ puppy ≠ puppies
 - Rare or new words in a language?
 - Possible fixes: Smoothing methods, unknown word, subword vocabulary

Enter the neural networks...

METRO

NEWS...

Elon Musk-founded OpenAI builds artificial intelligence so powerful it must be kept locked up for the good of humanity

Comment

Scientists at an organisation founded and sponsored by Elon Musk have announced the creation of a terrifying artificial intelligence that's so smart they refused to release it to the public.

OpenAI's GPT-2 is designed to write just like a human and is an impressive leap forward capable of penning chillingly convincing text.

It was 'trained' by analysing eight million web pages and is capable of writing large tracts based upon a 'prompt' written by a real person.

But the machine mind will not be released in its fully-fledged form because of the risk of it being used for 'malicious purposes' such as generating fake news, impersonating people online, automating the production of spam or churning out 'abusive or faked content to post on social media'.

OpenAl wrote: 'Due to our concerns about malicious applications of the technology, we are not releasing the trained model.

Elon is one of the world's most famous doom-mongers and fears the rise of the machines will end very badly for humans Pictures: REX/Joe Rogan Experience

Google Brain unveils trillion-parameter Al language model, the largest yet

		(B)
	OpenAI GPT	0.1
Currently more of a research project than a	OpenAl GPT-2	1.5
commercial product	OpenAl GPT-3	175
Google Brain has developed an artificial intelligence language model with some 1.6 trillion parameters.	Google switch transformer	1,600

Model

That puts it at nine times the size of the OpenAI's 175 billion parameter GPT-3, previously considered to be the world's largest language model.

While it gives some indication of the project's

scale, the models are too different in architecture for a meaningful 'apples-to-apples' comparison.

I like big parameters and I cannot lie

Params

Neural network language models: Advantages

No fixed context length

- Better at long range dependencies
- Sparsity less an issue
 - Words are a continuous vector

	· · ·
	(0.286
	0.792
	-0.177
	-0.107
expect =	0.109
	-0.542
	0.349
	0.271
	0.487

Neural network language models: Advantages

More compact than n-gram models

- Size doesn't increase every time it sees a novel bit of text

Great performance!

- Typically better than n-gram model on the same data
- Using together with n-gram model = better than either alone
- Using an *ensemble* of neural models improves performance

Problems with any language model

• Sensitivity to training data: Predicts text similar to genre trained on

- Lots of *corpora* (collection of text) of written English

Reddit	I wish it could have let us know in advance. No one can regulate your emotions for you.
Apache email	There's a backlog of thousands of defects, just keep moving forward. Could you describe how I can reproduce the problem?
Blog posts	In The Rocker Dwight Schrute trades his shirt and tie for a pair of drumsticks. What is the impact of that going to be on your business?

- Conversational corpora much harder to find

Switchboard	do you cook for yourself or do you cook for others mostly I just cook for myself
Movie subtitles	I don't understand why he's so upset, sensei. Got anything cold to drink?

- Possible fixes: Data select from corpora, adapt model on user's text

Modeling conversations

- Speaking to someone ≠ writing to someone
 - Augmentative and Alternative Communication (AAC)
 - AAC users may use their device to speak for them
 - How can we optimize for conversational communication?
- Intelligent training data selection
 - Billions of words of text available (for English anyway)
 - We can filter out most of it and still have plenty!
 - Train *in-domain* language model on a small amount of conversational text
 - Train *out-of-domain* language model on the large training set
 - Score sentences with both, keep those scoring above a threshold¹

¹ Moore, R. and Lewis, W. Intelligent Selection of Language Model Training Data. In *Proc. ACL 2010*.

Selecting AAC-like training data

- Problem 1: Where to get AAC-like conversational text?
 - No large scale *in-domain* training sets
 - Actual AAC user text hard to get due to privacy and ethical reasons
 - A few small AAC-like phrase sets:
 - COMM Phrases written in response to hypothetical communication situations¹
 - SPECIALISTS Phrases suggested by AAC specialists at University of Nebraska-Lincoln

Сомм	Specialists		
Yes, I am studying hard.	Guess what I want?		
Is the staff treating you well?	It is different alright		
This is a really good sale.	When you find out let me know		
Can I have a large orange drink with no ice?	A little better		

¹ Venkatagiri, H. Efficient Keyboard Layouts for Sequential Access in Augmentative and Alternative Communication. In Augmentative and Alternative Communication (1999).

Crowdsource AAC-like data?!?

Microtask on Amazon Mechanical Turk

- Workers invented messages
- Judged other messages
- After quality control:
 - 5,890 messages
 - From 289 unique workers
- <u>http://www.aactext.org/imagine</u>

Vertanen, K. and Kristensson, P.O. The Imagination of Crowds: Conversational AAC Language Modeling using Crowdsourcing and Large Data Sources. In *Proc. EMNLP 2011*.

Due to a medical condition or accident, **imagine you can't talk or type** on a normal keyboard. Instead, you use a special **communication device that speaks for you**. You operate this device by pushing a button whenever your desired letter is highlighted. By repeatedly pushing the button, you can spell out words, phrases or entire sentences.

Invent a fictitious (but plausible) communication you might make using your device. Think of the things you might want to say to your family, friends, caregivers, and people you meet in the community. Please proceed **quickly and accurately**. Do NOT include any private information (such as real email addresses, phone numbers, or names). **Invent a new communication** for each task of this type.

Write as if you were actually using your communication device to speak for you. Do NOT write about your actions or state of mind.

Random sample of workers' messages

Good to see you again. I am very well thank you. I don't know. Glad to see you Fred. How is Betty? Well you always told me to watch what I was saying now I can haha! What did the lawyer say? Am very thankful. How are you now? Can you get me a drink? I'll try, maybe next week. I wish you wouldn't be mean to me! It's hot outside. Please change the channel. I have his number. Remember to lock the door when you leave.

Selecting AAC-like training data

- Problem 2: What is the best choice for a large training set?
 - Many large *out-of-domain* training sets to choose from:
 - NEWS Newspaper articles from several newswire corpora
 - WIKIPEDIA Articles and discussion threads from Wikipedia
 - USENET Messages from a Usenet corpus
 - SWITCHBOARD Transcripts of 2,217 telephone conversations
 - BLOG Blog posts from the ICWSM corpus
 - TWITTER Tweets sampled between 12/2010 3/2011

A (rough) comparison against actual AAC data

The unigram probabilities of the top 10 words of five nonspeaking adults over 14 days¹ compared with the probability in our Amazon Turk data and other large training sources.

¹ Beukelman, D. et al. Frequency of word occurrence in communication samples produced by adult communication aid users. *Journal of Speech and Hearing Disorders, 1984.*

Perplexity training on different sources

Result:

Turk data was the best, but Twitter was a close second.

However, crowdsourcing millions of words of text could get expensive!

Twitter data selection example

CE difference	Sentence	
-2.0	all's well now almost too late any news you want to share about your company	more AAC lik
-1.0	aah lunch time about to leave the party actions speak louder then words my friend	
0.0	aaron carter better be much alive aawh he is so cute ability is what you are capable of doing	
1.0	a bad bounce leads to another kingston goal a bad gurl is lyk smoke in d eye or vineger on d teeth abba the concert tonight	
2.0	a b c d e f g h i j k l m n o p q r s t v w x y z oops abidan actually passed the cinnamon challenge xd a bit of a touch up in ps	less AAC like

Results of using data selection

• Training a AAC conversational language model:

- In-domain-text: Amazon Turk worker invented messages
- Out-of-domain text: TWITTER, BLOG, and USENET
- Trained 3 languages models, then mixed together

Language model	Perplexity Сомм	Perplexity Specialists	Keystroke savings Сомм	Keystroke savings SPECIALISTS
Switchboard (no data selection)	166	64	54.4%	57.7%
Twitter (no data selection)	56	27	60.9%	61.9%
Mixture (with data selection)	48	26	62.5%	63.1%

- Latest trained models: <u>https://imagineville.org/software/</u>
- Open question: How well does this work on text from actual AAC users?

Recruiting: AAC text donation effort

You can help improve future AAC interfaces by donating sentences from your history

We are collecting sentences written by users of Augmentative and Alternative Communication (AAC) interfaces. These sentences will be used to help improve AAC text entry interfaces. Contributed sentences will become part of a **public data set**. This data set will be available for download by researchers working to improve AAC text entry interfaces.

Participant requirements:

- You must be 18 years of age or older
- You must use an AAC interface for at least some of your communication needs
- You must use an AAC interface that logs your writing to a simple text file
- You must not have a cognitive impairment

Details:

You will need to install our custom application on your computer. The application runs on Windows, Mac, and Linux operating systems. You will point the application at a text file of things you have written using your AAC interface. You can then **select whatever sentences you would like to share** with the project.

Contact Keith Vertanen, vertanen@mtu.edu if interested. More details: https://aactext.org/donate

Baton donation app

Baton	
	Dashboard
Review sentences	
O SELECT ALL	732 left
Does that item contain any dairy products?	
SEND How are you doing today?	
SEND I got you a shirt similar to that.	
SEND Can I drive your car?	
SEND Why didn't we think of that sooner?	
SUBMIT AND MOVE TO NEXT	5 👻 per page

User must explicitly select sentences to donate Reviewed prior to adding to public data set

Privacy options:

- Sentences put in global pool
- Associated with anonymous ID
- Associated with anonymous ID + user details

Imports from:

- Dasher
- Grid 3
- Plain text file
- Comma separated file

Demo of different language models
Language models and text entry

- Uses of a language model (thus far):
 - Auto-correct to handle mistargeted keys, missing keys, additional keys
 - Dasher: fundamental to the interaction technique
- Some other uses: Taco Tuesday??? External Inbox × **Keith Vertanen** Keith Vertanen (gmail.com) to me 🔻 > What is your n What do you think about tacos? Meeting "n" name new I have some really spicy salsa! t y u i o p Hey Keith, q w e r. s d f g h j k l а We have to get going on this. Let's get together soon to talk about the new project. zxcvbnm $\langle X \rangle$ 仑 Sounds yummy! Sounds good to me! Yum! Does next Wednesday work for you? [tab] Ŷ 123 space return

Word predictions

Phrase predictions

Entire reply predictions

Word predictions

AAC interfaces often offer word predictions

- Can accelerate a user with a slow input rate
- Can help to avoid recognition errors

Tobii Communicator eye keyboard. Five word predictions appear above the keyboard

This is so mu	ich faster					
speak	り undo	clear	quick phrases	M+ store message	MR retrieve message	e message banking
faster	0	a	е	n	С	d
foster	t	h	S		m	V
fasten		r	U	b	k	Qu
fatter	f	р	g	×	Z	
falter	W	У	j			
?	space			!		123
e 🗲	backspace	+	\$	<	>	
This is so much faster!		What ti	me is it?	so I said to the	hair dresser, the	

Text Talker by Smartbox. Five word predictions appear in the leftmost column.

How do word predictions work? The basics

- If you haven't started the current word:
 - Ask language model for X most probable given any previous text

- If you typed part of word:
 - Lookup all words in some *vocabulary* matching letters typed thus far
 - Ask language model for X most probable given any previous text

How many predictions X to offer?

- More is better from a keystroke savings perspective, but...
- Increases cognitive overhead to check them
- Takes up more screen space
 - Smaller targets on a virtual keyboard
- May increase time to select targets
 - More things in a row-column scanner

Word predictions	Keystroke savings
1	46.2
2	53.1
3	56.6
4	59.1
5	60.5
6	61.8
7	62.7
8	63.7
9	64.3
10	64.5

Keystroke savings (%) with increasing number of word predictions. Results on 4,567 AAC-like sentences using a Twitter 4-gram optimized for AAC-like text.

- Condition on previous words?
 - Word unigram language model, ignores previous text
 - Unigram predictions are worse, but...
 - Can be more predictable for a user
 - After typing "n", "name" always appears in slot 2

\rightarrow	What is your n							
"n"			name			nev	v	
q	w	e I		t J	yl	J	i o	p
а	S	d	f	g	h	j	k	Ι
Ŷ	Z	X	C	V	b	n	m	\otimes
123		Ŷ		spa	ace		ret	turn

"n"		need	never		
q w e	• r	tγι	u i o p		
as	d f	g h	jkl		
순 Z	ХС	v b	n m 🗵		
123	Ŷ	space	return		

Different word predictions for words starting with "n".

Model	Keystroke savings
1-gram	45.8
2-gram	56.1
3-gram	59.6
4-gram	60.5

Keystroke savings (%) with increasing language model context siz. Results on 4,567 AAC-like sentences using a Twitter 4-gram optimized for AAC-like text.

• What vocabulary to use?

- Are words appropriate given a user's literacy?
- Do you want to predict naughty words?
- Words ideally in the language model's training data
 - Otherwise no basis for ranking the word
 - What if the user adds words to the vocabulary?

Vocab size	Keystroke savings
100k	60.5
20k	60.0
10k	58.8
5k	56.8
2k	51.7
1k	47.1

Keystroke savings (%) with decreasing vocabulary size. Results on 4,567 AAC-like sentences using a Twitter 4-gram optimized for AAClike text and five prediction slots.

• Consider a user's input accurate?

- User may make errors typing characters

Treat as certain

- Return only predictions starting with exact prefix
- But any mistake when typing the prefix must be corrected

Treat as uncertain

- Use input model to obtain set of possible prefixes
- Find words in vocabulary that match possible prefixes
- Combine probabilities from input model and language model

Even more uses of language models

it sounds good to me target: itsndsgdtom| input : i 0 y u p q h н k S d g а b X Ζ Х С ۷ m n Done

Abbreviated input¹

Touchscreen device demo:

https://keyboard.imagineville.org

Word gesture input (aka swipe, glide)²

¹ Adhikary, J. and Vertanen, K. Accelerating Text Communication via Abbreviated Sentence Input. In *Proc. of ACL 2021*.
 ² Kristennson, P.O. and Zhai, S. SHARK²: a large vocabulary shorthand writing system for pen-based computers. In *Proc. of UIST 2004*.

Dwell-free eye typing

• What if you didn't have to dwell to eye type?

User gazes at each desired letter in sequence, skipping spaces.

System recognizes entire sentence.

- Participants reached 46 words-per-minute¹
- But we cheated: recognizer knew the answer!
 - Users only needed to look within 1.5 key radii of target letters
- Implemented for real in Tobii Communicator 5 https://www.youtube.com/watch?v=FbPmSrsunCQ

¹ Kristennson, P.O. and Vertanen, K. The Potential of Dwell-Free Eye-Typing for Fast Assistive Gaze Communication. In *Proc. of ETRA 2012*.

Single switch communication

• Row-column scanning (RCS)

space	E	Α	R	D	U
т	0	I	L	G	В
N	S	F	Y	v	L
н	С	Р	К	Q	
М	w	х	Z	,	?

https://www.wikiwand.com/en/Switch_access_scanning

• Limitations:

- Options must be arranged in a grid
- No built in error tolerance
- Selection time does not scale well with number of options

Nomon: flexible writing with a single switch

🗕 🗕 🌔 🧭 Keyboard A	× +			0	
← → C https://nomon.csail.mit.edu/html/keyboard.html					
Clock Rotation Speed:		1 Retrain		🗹 Learn 🗹 Pause 🗹 Sound	
RCS Keyboard 😃 😌 😔	Welcome to the Nomon Keyboard! I	Press ? for help. ?			
⊘a (€)ya (€)yard (€)yan	Фь	O c	Da	te termination (€) e termination (€) e termination (€) years (€) year	
⊘ f	Øg	Юh	()i	Ю	
Фĸ	()	(S)m	()n	Operation of the second se	
ФÞ	Фq	Ør	⊕s	(j)t	
Øu	Øv	Øw	Øx	Фу	
⊖z	() y'all	①. ⑦, ⊡! ①?	Backspace	<pre>①Undo y</pre>	
how are yl					

Broderick T. and MacKay D.J.C. Fast and Flexible Selection with a Single Switch. PLOS ONE 2009.

Dr. Tamara Broderick (MIT)

Dr. Emli-Mari Nel

Nicholas Bonaker (MIT)

Dr. Keith Vertanen (MTU)

Nomon demo

https://nomon.csail.mit.edu Use spacebar as your switch

Nomon user study

• Nomon vs. row-column scanning (RCS)

- 13 participants without motor-impairment
- 10 sessions
- Participants used a webcam switch
 - Webcam performance similar to actual switch users
- Text entry task
 - Entered short phrases
- Picture Selection
 - Selected from a large set of emojis
- More details:
 - <u>https://www.youtube.com/watch?v=eIm5G1sqHAM</u>

()	00	00
	1	<mark>₿</mark>
	Backspace	Undo

A portion of the picture selection grid.

Nomon study: Text entry results

Participants plateaued after 5th session with row-column scanning (RCS)

Participants continued to improve with Nomon

Nomon study: Picture selection

Participants selected options **35% faster** with Nomon Participants performed **half as many corrections** using Nomon

Paid Research Participants Needed

- Seeking individuals with motor-impairments and experience using single-switch interfaces
- You will be asked to use two assistive-technology keyboard interfaces
- Study will take place online and at your own pace
- Must be in the **US/UK** and **18+**.
- Compensation is \$15 USD per session
- Interested? Email Nick Bonaker at <u>nbonaker@mit.edu</u>
- Study is run by Nicholas Bonaker (MIT), Prof. Tamara Broderick (MIT), Dr. Emli-Mari Nel, and Prof. Keith Vertanen(MTU)

Faster writing by abbreviating?

Abbreviated sentence input

- Fast input difficult for people who are motor-impaired
- Word completions can accelerate input
 - But comes with a cognitive cost
 - Takes physical effort to select
- Input entire sentence
 - Remove spaces and mid-word vowels
 - Recognizer infers most likely sentence

Faster writing by abbreviating?

- Faster than a keyboard with word completions?
 - Probably only if you are slow at typing!
 - Simulate motor-impairment: users had to dwell click keys

Condition: Word

Condition: Sentence

t

g

V b

y u

h i

n

i

k

m

0 р

Τ.

×

Done

Results from study with 28 participants

Word-at-a-time input and sentence abbreviated input had **similar entry rates**

Much higher error rate of sentence abbreviated input (though some participants did abbreviate according to guidelines)

Entry rate over the session

Participants improved with practice, similar entry rate in final phrase blocks

Input of common sentences

• Can we enable quick input of really common sentences?

- Sentence that probably have been said many times
- Previous abbreviation system:
 - Error rate 7.2%, uncomfortably high!
 - May need to abbreviate even more aggressively to be faster
 - Used an AAC-optimized language model, but was still fairly general
 - No correction interface if system got it wrong
- New effort: Develop a corpus of frequent conversational phrases
 - Mined from large data source and ranked using machine learning
 - Predict from the ranked set
 - Improved input and correction interface

Recruiting: Evaluating and Using Sentences in AAC Interfaces

We are looking for volunteers to complete a survey exploring the use of sentences in Augmentative and Alternative (AAC) interfaces. The survey will ask you to **rate how useful a series of sentences might be in an AAC interface**. You will also be asked your opinion about **how sentences might best be incorporated into future AAC interfaces**.

You can complete the study in your web browser. You can complete it over multiple sessions if you like. The survey is completely anonymous.

To participate, you must:

- Be an AAC user, AAC practitioner, AAC software developer, AAC researcher, or communicate with someone who uses AAC
- Be 18 years of age or older
- Be a fluent speaker of English
- Have no cognitive impairment

Email Keith Vertanen at <u>vertanen@mtu.edu</u> to be informed when survey opens.

Future directions

• Bigger and better language modeling

- Ensemble of neural and n-gram language models
- Personalized to a user's past communications
- Learning and improving as a user writes
- Open problems:
 - Using large and personalized models while online or offline
 - On low resource devices
 - Maintaining privacy if models are hosted and/or trained online
 - Efficacy on actual AAC user text and in an actual interface

Future directions

Context sensitive predictions

- Who you are talking to, what they said
- Where you are, what you are looking at, ...
- Explicit help (co-construction) from communication partner
- Open problems:
 - Proving robust gains are possible
 - Privacy concerns of AAC users and their communication partners

Future directions

Supporting diverse language needs

- Predictions for symbolic communicators
- Predictions that are literacy level appropriate
 - And change as the user does
- Supporting non-English speakers, multilingual speakers
- Enhanced predictions in targeted domains
 - E.g., talk about the weather mode

More novel interaction methods

- Dasher, Nomon, dwell-free eye-typing
- What is next???

How can you help?

- Nomon single-switch study
 - Who: US/UK AAC users with single-switch experience
 - Multiple sessions writing using Nomon
- Baton AAC history collection
 - Who: AAC users (via Dasher, Grid3, plain text)
 - Select sentences you think would help AAC researchers
- Rating conversational utterances
 - Who: AAC users, AAC practitioners, AAC researchers
 - Rate between 20 and 100 sentences for usefulness
 - Share how you envision AAC interfaces using utterance predictions

Summary

Language modeling for predictive AAC

- Count things up in a large text file
 - The text matters, as does learning from a user's text
- Word predictions: many design decisions

Two open-source AAC interfaces

- Dasher, write by pointing
 - https://github.com/dasher-project/dasher/releases
- Nomon, flexible single-switch selection
 - https://nomon.csail.mit.edu/html/keyboard.html
- Try them and send us your feedback!

Keith Vertanen

vertanen@mtu.edu https://keithv.com

