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ABSTRACT 

Virtual keyboard typing is typically aided by an auto-correct 
method that decodes a user’s noisy taps into their intended 
text. This decoding process can reduce error rates and pos-
sibly increase entry rates by allowing users to type faster 
but less precisely. However, virtual keyboard decoders some-
times make mistakes that change a user’s desired word into 
another. This is particularly problematic for challenging text 
such as proper names. We investigate whether users can 
guess words that are likely to cause auto-correct problems 
and whether users can adjust their behavior to assist the 
decoder. We conduct computational experiments to decide 
what predictions to ofer in a virtual keyboard and design 
a smartwatch keyboard named VelociWatch. Novice users 
were able to use the features of VelociWatch to enter chal-
lenging text at 17 words-per-minute with a corrected error 
rate of 3%. Interestingly, they wrote slightly faster and just 
as accurately on a simpler keyboard with limited correction 
options. Our fnding suggest users may be able to type dif-
fcult words on a smartwatch simply by tapping precisely 
without the use of auto-correct. 
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• Human-centered computing → Text input.
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1 INTRODUCTION 

Text entry is a ubiquitous computing activity. As interaction 
moves from desktop computers to mobile phones, smart-
watches, and optical see-through head-mounted displays, 
the need for fast and accurate text entry remains. A particu-
lar challenge is the inherently noisier input that a text entry 
system has to deal with as text entry methods move beyond 
physical full-sized keyboards. Such physical keyboards ac-
commodate ten-fnger typing and provide tactile feedback. 
When such keyboards are transplanted to small touchscreens, 
the lack of tactile sensation feedback and small form factor 
result in increased noise as users’ input becomes less precise. 

A popular solution is to use an auto-correct algorithm to 
rectify typing mistakes. The algorithm’s job is to infer the 
most likely intended text from a user’s noisy input. When 
this method is probabilistic, it is called a decoder. The decoder
searches for the most probable text hypothesis given an un-
certain observation sequence. This is possible because natural
languages are highly redundant with most letter sequences 
being improbable. Valid letter sequences can be captured by 
a statistical language model. The decoder’s search for the
most likely text is guided by this language model. 

A well-designed decoder can help users reduce their error 
rate. This may also increase their entry rate by allowing 
faster and less precise typing. However, decoding can also 
result in unexpected results. When the decoder is carrying 
out its search, it is relying heavily on its language model. 
Thus if the user’s intended text is similar to the text the 
language model has been trained on, the probability is high 
that the decoder will return the correct text. The fip-side is 
that if the user is writing text that is not well-represented 
in the language model, the decoder may return erroneous 
text. This results in the user being unexpectedly exposed to 
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Figure 1: Entering text on the VelociWatch keyboard (left) 
and on a simpler version of the keyboard (right). 

an incorrect word, which has to be manually corrected. This 
“auto-correct trap” [31] increases error rates, reduces entry 
rates, and increases user frustration. 

To investigate how to help users avoid and correct recog-
nition errors, we created VelociWatch, a virtual keyboard 
optimized for the input of challenging text. We will compare 
the interface we designed (Figure 1 left) with a simpler ver-
sion with more limited correction features (Figure 1 right). 

Challenging Text Input 
We specifcally want to study interface designs that help 
users avoid or fuidly correct auto-correction errors. How-
ever, most text entry evaluations have users copy easy to 
remember text such as the MacKenzie phrase set [20] or the 
Enron mobile data set [28]. As we will show, these phrase sets 
are quite predictable under a well-trained language model. 
Combining a good language model with a high-performance 
decoder results in user evaluations in which participants 
rarely face recognition errors. We will frst design a new 
phrase set containing text that is harder for a decoder to 
infer, thus serving as a more challenging evaluation task. 

Aside from using challenging phrases, we also wanted to 
collect data with substantial input noise. Thus we conducted 
our investigation on a smartwatch. The small form factor 
makes precise typing difcult. Nevertheless, it is feasible to 
type on a full QWERTY virtual keyboard on a smartwatch 
if typing is aided by a decoder. Due to its reliance on de-
coding for efective text entry, we argue a smartwatch is 
a good testbed for investigating decoder and interface im-
provements. In the future we anticipate such harder cases 
of keyboard decoding will be even more relevant as users 
transition from mobile phones to wearable devices that rely 
on noisy sensing methods such as depth cameras. 

Error Avoidance via Leter Locking 

Many users today have substantial experience with touch-
screen keyboards and their associated recognition errors. 
Even without intimate knowledge of how a decoder works, 

we conjectured users may often know a priori when an error 
is about to occur. To test this, we designed a simple error 
avoidance technique to see if users could anticipate prob-
lematic words and change their input behavior. Our letter 
locking method transfers control of the decoding process 
to the user. When a decoder considers a single observation 
(i.e. a touch point), it will explore diferent hypotheses for 
the observation (e.g. all letters adjacent to the key typed). 
When the user locks a letter, the decoder is prevented from 
performing this exploration and the hypothesis is fxed to 
the key touched. To assist users in locking the right letter, 
the nearest letter to a user’s touch location is shown in a 
large font. The user locks the letter by maintaining contact 
with the touchscreen for an extended duration. After a time 
threshold has been exceeded, the preview changes color and 
the device vibrates to indicate the letter has been locked. 
Letter locking allows a user to fuidly switch control be-

tween the decoder and the user. A user can take control of 
how each letter is input and thereby either override decoding 
altogether by locking every letter in the word, or steer the 
decoder by locking a subset of the letters in a word. Using 
our new phrase set, we show in Experiment 1 that users 
can anticipate difcult words and lock letters to signifcantly 
reduce their error rate at a modest reduction in entry rate. 

Error Avoidance and Correction via Selection Slots 
Virtual keyboards often display a number of selection slots 
above the QWERTY layout. Users tap a slot to take a certain 
action such as completing the word currently being typed or 
using the literal text nearest to each tap observation. While 
the use of selection slots is common in commercial keyboards 
and some research interfaces (e.g. [8]), we are not aware 
of any work comparing the efcacy of the many possible 
designs. It would be onerous to user test the many diferent 
options. Instead, in Experiment 2 we conduct simulations 
on data collected from previous studies on small form-factor 
virtual keyboards. By simulating optimal use of the slots, our 
work helps interface designers decide what slot-based error 
avoidance and correction features to include. 

Tap versus Swipe Selection 

As we will see, our ofine experiments support including a 
rich set of error avoidance and correction options. Providing 
numerous error avoidance and correction features not only 
consumes valuable screen real estate, but also requires a way 
for users to select the diferent options. Ideally these features 
are selectable with little risk of making a selection error. 
This helps avoid a cascade of errors that can be extremely 
detrimental to text entry performance [13]. 
Virtual keyboards can support the input of entire words 

by a continuous swipe gesture [35]. They can also support 
other functionality via swipe such as using a right swipe to 
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recognize pending input [26, 30] or to control other keyboard 
functions [11]. Swipes have also been used to correct speech 
recognition errors [17, 22, 27]. We wondered if swipes could 
enhance selecting a small number of actions on a virtual 
keyboard. In Experiment 3, we explore swipe versus tap 
selection on a smartwatch keyboard we call VelociWatch. 

Simple versus Complex Design 

Our experiments led to the design of a reasonably complex 
keyboard squeezed onto a small touchscreen device. Having 
too many options could cause overheads that might actu-
ally reduce real-world performance. For example, users may 
spend too much time checking prediction slots. Also, users 
might simply prefer a design with fewer options or that con-
sumes less screen space. In Experiment 4, we compare our 
best design with a simpler one with fewer features. 

Contributions 
(1) We create a new phrase set for exploring challenging 

text entry. Little work has investigated the input of 
difcult text. We are the frst to do this combined with 
the challenging form factor of a smartwatch. 

(2) In a study with 16 users, we show that users can pre-
dict words that will likely be problematic for a virtual 
keyboard decoder. Further, we show that users can 
adjust their input to help the decoder avoid errors. 

(3) We compare 135 keyboard designs in computational 
experiments on 3 K recorded sentences. We show for 
the frst time the impact of a literal slot (a common 
feature in commercial keyboards). We are not aware of 
any comparison of this scale on the role of prediction 
slots based on actual touchscreen typing data. 

(4) In a study with 24 users, we compare tap and swipe se-
lection of small touchscreen targets. While we thought 
swipe selection would be better, both performed simi-
larly. This is a surprising and useful result; many smart-
watch text entry interfaces have been designed around 
avoiding small buttons (e.g. [3, 10, 12, 23]). 

(5) In a study with 14 users, we compare our VelociWatch 
keyboard against a simpler keyboard with only limited 
correction options. We found on the simpler keyboard 
users could modulate their typing to be accurate, rely-
ing on a literal slot to avoid the auto-correct trap. This 
is further evidence that small targets may be viable. 
The study also brings out interesting questions regard-
ing cognitive overheads and correction behavior. 

2 RELATED WORK 

Mobile text entry methods have been extensively researched 
[19, 21, 37]. Today virtual keyboards dominate mobile touch-
screen devices. Virtual keyboard typing can be improved 

using decoders. Goodman et al. [7] proposed a substitution-
only decoder which corrects typing errors using a combi-
nation of a touch model and a language model. Kristensson 
and Zhai [16] proposed correcting keyboard typing using 
geometric pattern matching. Clawson et al. [4] presented a 
correction method for physical thumb keyboards based on 
key timings. An orthogonal approach to decoding keyboard 
typing is the gesture keyboard [15, 34, 36] in which users 
gesture through all the letters of a word on the keyboard. 
Text entry and virtual keyboard typing have also been 

investigated for smartwatches (see [1] for a survey). Early 
interfaces focused on techniques to allow users to determinis-
tically select the tiny keys on a smartwatch (e.g. ZoomBoard 
[23], Swipeboard [3], SplitBoard [12], and DualKey [10]). 
Other interfaces such as WrisText [6] and InclineType [9] al-
low users to enter text using wrist movements. The frst study 
to demonstrate the viability of recognition-based typing on a 
smartwatch form-factor full QWERTY keyboard was the sys-
tem VelociTap [30]. VelociTap used a decoder to infer users’ 
intended text. Gordon et al. [8] later demonstrated Watch-
Writer, a smartwatch keyboard with decoder-supported tap 
input, gesture-keyboard input, and word prediction. Watch-
Writer uses two suggestion slots. One has the literal text 
typed by the user while the other contains the decoder’s 
most likely prediction. Other smartwatch studies include Yi 
et al. [33] and Turner at al. [25]. 
Weir et al. [31] proposed improving decoding using two 

techniques. The frst technique was to use Gaussian Process 
regression to create a more accurate touch model. The second 
technique was to allow users to continuously regulate their 
uncertainty using pressure. The harder a user pressed on a 
keyboard key, the less likely the decoder would change the 
key press into another key. This allowed users to regulate 
their uncertainty since pressing harder would concentrate 
the probability mass near the contact point while exerting 
low pressure would spread out the probability mass across 
many keys and thereby allow the decoder to search wider. 

Arif and Stuerzlinger [2] used the time and/or movement 
signal in a touchscreen tap to infer if a user had tapped with 
additional pressure. They tested a keyboard that used a tap 
with additional pressure to bypass incorrect predictions. For 
the input of phrases with some out-of-dictionary words, this 
approach increased entry rate and decreased error rate. 
In this paper we also allow users to regulate their uncer-

tainty, but our design is diferent from prior work in two 
ways. First, letter locking is a discrete binary technique which 
either fxes a letter or leaves the decoder free to replace it. 
This means the efect of locking letters is easy to understand. 
Additionally, since individual letters can be locked, users can 
type quickly in the portion of a word that is likely easy to 
predict, while slowing down in more difcult areas (e.g. the 
“ii” in “desiigner”). Second, letter locking is accompanied by 
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clear visual and vibration interface feedback. This allows the 
user to be confdent that a letter has indeed been locked. Due 
to these factors, we conjecture users will have an additional 
sense of agency in controlling the decoder. 

Weir et al. [31] also investigated whether users could pre-
dict if a decoder would be able to correctly infer a phrase or 
not. They found that for phrases that were correctly inferred, 
users generally had a high ability to predict the outcome. 
However, for phrases that were incorrectly inferred, users 
tended to overestimate the ability of the decoder. 
Text entry methods are typically evaluated using a tran-

scription task in which participants copy memorable phrases 
as quickly and as accurately as possible. MacKenzie and 
Soukoref [20] created a standard phrase set to improve 
the replicability of studies. Their phrase set consists of 500 
phrases designed to be memorable, although this was never 
tested. Vertanen and Kristensson [28] later presented a phrase 
set verifed to be memorable based on emails written by En-
ron employees on their BlackBerry mobile devices. A study 
later showed there was no signifcant diference in entry or 
error rates between these two phrase sets [14], although the 
latter has higher external validity. 

In our studies, we required participants to memorize phrases 
as the smartwatch’s screen size precluded showing phrases 
during text entry. Memorization results in somewhat faster 
entry rates at the cost of somewhat increased error rates 
[14]. As is common in text entry studies, we used memo-
rization since we feel it is more similar to real-world input. 
A composition task would be even more realistic [29], but 
makes error rate harder to measure. Further, we worried 
participants might compose only easy-to-recognize text. 
There has also been research on sampling memorable 

and representative phrases across languages [18, 24]. Yi et 
al. [32] proposed a word clarity metric based on geometric 
pattern matching [16] for sampling phrases containing words 
that might be confused due to their geometric proximity. In 
contrast, we present phrases designed to be easy or hard to 
recognize for a decoder that uses a statistical language model 
to guide its search. We will do this by selecting phrases based 
on whether they include out-of-vocabulary words which are 
harder for the decoder to recognize. 

3 CHALLENGING PHRASE SET 

We wanted phrases that would be challenging to recognize 
while still being memorable. We sourced our phrases from 
Twitter messages sampled during 2016. We parsed the tweets 
to fnd likely sentences based on capitalization and end-of-
sentence punctuation. We generated a banned word list of 
1,706 obscene words semi-automatically from a variety of 
sources. We removed sentences containing a banned word. 

For text entry evaluations, typically we aim for memorable 
phrases to avoid participants needing to refer to the phrase 

In-vocabulary phrases Out-of-vocabulary phrases 
I’m prettier than you. Ready to meet Nanook! 
Woke up still Loving y’all. I voted for Brexit. 
I want a Margarita. Atletico ties it up! 
This debate calls for vodka. Is Rafa playing today? 

Table 1: Examples from our challenging Twitter phrase set. 

during entry. Longer sentences are normally more difcult 
to memorize, so we removed sentences with more than 10 
words. As in the MacKenzie phrase set [20], we focused on 
sentences with four or more words. Using a word list of 100 K 
English words, we created a set of 1.04 M sentences where all 
words were in-vocabulary. We created a second set of 141 K 
sentences that had a single out-of-vocabulary (OOV) word. 
We felded a random subset of 850 of these sentences to 

three to fve Amazon Mechanical Turk workers. We only 
kept sentences that the majority of workers rated as easy 
to understand, judged as having no spelling errors, and that 
workers could type from memory with no errors (ignor-
ing case and punctuation). These sentences were further 
manually reviewed by one of the authors to remove any re-
maining ofensive sentences. The fnal phrase set had 213 
OOV phrases (denoted TwitterOOV) and 194 in-vocabulary 
phrases (denoted TwitterIV)1. 
Table 1 shows some example phrases. The OOV phrases 

are the challenging part of the phrase set. We included the 
in-vocabulary set for comparative purposes. Phrases are in 
mixed case consisting of the letters A–Z plus apostrophe, 
comma, question mark, exclamation mark, and period. 
One way to measure a text’s difcult is the frequency of 

OOV words. Another way is to measure its perplexity under 
a language model. Perplexity measures the average num-
ber of possible next tokens (typically words or characters) 
given the previous tokens. Lower perplexity means the text 
is generally easier to recognize. We compared the perplexity 
of our new phrases against the MacKenzie phrase set [20] 
(denoted MacKenzie) and the mem1-5 sets from the Enron 
mobile data set [28] (denoted EnronMem). For all sets, we 
removed sentences with numbers and stripped punctuation 
aside from apostrophe. 

To measure average per-character perplexity, we used the 
character language model employed by our decoder (to be 
discussed shortly). As shown in Table 2, our TwitterOOV 
had the highest perplexity. Thus we anticipate it should be 
suitably challenging in comparison to other common phrase 
sets. We also computed the percentage of words that were 
OOV with respect to our 100 K word list. All phrase sets had 
nearly no OOV words except for the TwitterOOV set. 

1http://keithv.com/data/twitter-phrases.zip 
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Phrase set Perplexity OOV rate Words / phrase 
TwitterIV 3.65 0.00% 6.69 
TwitterOOV 5.34 14.71% 6.80 
MacKenzie 4.59 0.07% 5.43 
EnronMem 3.96 0.10% 5.31 

Table 2: The per-character perplexity, percentage of words 
that were out-of-vocabulary (OOV), and words per phrase 
in diferent phrase sets. 

We also note how EnronMem is more predictable on a per-
character basis than MacKenzie. While in prior work [14] 
the choice of phrase set did not impact user performance in 
crowdsourced experiments on desktop keyboards, these re-
sults suggest language model-based input methods may also 
want to consider the predictability of phrases. Specifcally, 
recognition-based input systems evaluated on EnronMem 
may appear more accurate in comparison to other systems 
evaluated on the more challenging MacKenzie phrases. 

4 APPROACH 

Armed with our Twitter phrase set, we set out to investigate 
interface interventions aimed at helping users avoid or cor-
rect recognition errors. Throughout this paper, we focus on 
input on a smartwatch since in past work small touchscreen 
keyboards have resulted in relatively high error rates even 
on easy Enron mobile phrases [26, 30]. This paper presents 
the following progression of four experiments: 

• Experiment 1 — We compare user and decoder per-
formance both with and without a feature allowing 
users to lock in particular characters of their input. 

• Experiment 2 — We explore how to use a small num-
ber of suggestion slots to enable low error rate and 
high keystroke savings. We do this in computational 
experiments on thousands of sentences typed on small 
virtual touchscreen keyboards. 

• Experiment 3 — We use Experiments 1 and 2 to in-
form the design of our smartwatch virtual keyboard 
VelociWatch. We compare three diferent options for 
using tap and swipe actions to trigger interface actions. 

• Experiment 4 — We improve VelociWatch based on 
Experiment 3. We compare our keyboard design with 
a simpler design with only a few correction options. 

5 EXPERIMENT 1: LETTER LOCKING 

The goal of this study was to investigate if users could antic-
ipate words likely to cause a recognition error and modulate 
their behavior to avoid them. Further, we wanted to see 
whether this additional user signal could help our decoder. 

Keyboard design 

We designed a virtual keyboard for the Android Sony Smart-
Watch 3. This watch has a screen area of 29 mm × 29 mm 
with a resolution of 320 × 320 pixels. The watch has a 4-core 
1.2 Ghz ARM CPU with 512 MB of memory. Recognition 
occurs locally on the device. 
The keyboard contains the letters A-Z plus apostrophe. 

There is no spacebar key. As shown in Figure 2, the keyboard 
occupies the lower portion of the screen and measures 29 mm 
× 13 mm. The keys are shown using white text on a grey 
background with no explicit visual key borders. This results 
in an efective key size of 2.9 mm × 4.3 mm. 

The text result area above the keyboard shows previously 
recognized text as well as the nearest keys for the current un-
recognized input sequence (Figure 2a). Swiping right causes 
the current tap sequence to be recognized (Figure 2b). During 
recognition, the screen background turns green and no input 
is accepted until recognition completes. 
When a user’s fnger is in contact with the screen, the 

keyboard displays the nearest key in a large font over the 
text result area (Figure 2c). This allows the user to reposition 
their fnger despite the visual occlusion caused by their fnger. 
If a touch event lasts for 500 ms or longer, the letter popup 
turns orange and the watch vibrates (Figure 2d). This signals 
that whatever letter is under a user’s fnger when they lift 
up will be locked and not subject to auto-correction. 

Swiping left deletes the previous tap from the observation 
sequence and deletes the nearest key label from the result 
text area. Swiping up moves to the next task. Swipes had 
to be 3 mm or longer to be recognized. Swipe direction was 
determined by the angle between a swipe’s frst and last 
point. Taps had to be within 3 mm of the top of the keyboard 
area to register. Swipes could occur anywhere on the screen. 
In this study users could not delete or otherwise correct 

recognition results (e.g. via a backspace key or a word sugges-
tion bar). We chose to do this to understand the performance 
of letter locking in isolation rather than how it might perform 
in combination with other error correction features. 

Decoder 
Our decoder is based on the noisy tap decoder VelociTap 
[30]. The original version of VelociTap inferred the most 
probable sentence given a sequence of two-dimensional tap 
locations. Here we use a modifed version that recognizes 
input progressively, supporting input of a variable number of 
words (as in [5, 26]). For further details about the decoder’s 
operation, see [26, 30]. Here we highlight the changes made 
to support letter locking and give details about the specifc 
language models we used in this paper. 
To support letter locking, each tap observation was aug-

mented with a feld indicating if a tap should be treated as 

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 5



Figure 2: Example of writing “ready to meet nanook” in Experiment 1. (a) The keyboard has already recognized “ready to”. 
The user tried to type “meet” but was somewhat inaccurate. (b) After swiping right, the nearest key text is replaced with the 
correct recognition result. (c) If a fnger is down, the nearest key appears in a large font. (d) After a period of time, the letter 
changes to orange to signal it has been locked and no longer subject to auto-correction. (e) After locking the remaining letters, 
the user correctly obtains “nanook”. 

certain. This feld was set by the virtual keyboard whenever 
a touch event lasted over a threshold time. One or more taps 
in a word could be locked. In the case of locked taps, we 
allowed the keyboard model to only generate the key clos-
est to the touch up location. Other non-locked taps were 
probabilistically decoded as normal. So for example, a user 
might lock “n”, “a”, and “n” in “nanook” but quickly tap the 
fnal three letters. In this case, the decoder might return re-
sults such as “nanook”, “nannie”, “nannied”, and “nancy”, but 
would not be able to propose “rebook” or “cook”. 

We prevented the decoder from deleting locked observa-
tions. This ensured all locked letters had to appear in the 
recognition result. We also disallowed insertions between 
consecutive locked letters. This prevents the decoder from 
inserting guesses that might be probable under the language 
model, but which may contradict a user’s intent. For example, 
a user might lock the “p” and “c” in “snapchat” hoping to 
get a single word. In this case we want to avoid the decoder 
being allowed to insert a space between the locked letters. 
We trained our language models as in [26]. Our word 

model has 588 K n-grams and a gzipped ARPA text size of 
5.5 MB. In Experiment 1, we used a character model with 
766 K n-grams and a size of 6.3 MB. In Experiments 2 and 3, 
we used a slightly bigger character model with 963 K n-grams 
and a size of 9.0 MB. We found this bigger model improved 
recognition accuracy on the input from Experiment 1. 

Study Procedure 

We recruited 16 participants via convenience sampling. Par-
ticipants completed an hour session and were paid $10. Partic-
ipants were aged 18–27 (mean 19.1). 10 participants identifed 
as male, 2 female, and the rest did not answer. 15 participants 
were right-handed. 10 participants had never used a smart-
watch, 3 used one occasionally, and 3 used one frequently. 

In Experiment 1, participants entered memorable phrases 
from our Twitter phrase set. Due to the small size of the 
smartwatch screen, we further limited the Twitter phrases to 
those with six or fewer words. We also removed phrases with 

acronyms as we worried users might incorrectly assume the 
lock feature was only for spelling out acronyms. In the end 
we obtained 43 OOV phrases and 81 in-vocabulary phrases. 

Experiment 1 was a within-subject experiment with two 
counterbalanced conditions. In the NoLock condition, the 
feature allowing letters to be locked was disabled. Partici-
pants could still touch and hold to receive visual feedback of 
the key they were over, but the resulting touch up location 
was probabilistically decoded. In the Lock condition, partic-
ipants could touch and hold to lock individual letters. We 
instructed participants they could lock any number of letters 
in a word, including all or none. The keyboard reminded 
participants on each phrase that they could lock letters. 
Participants wore the watch on their non-dominant arm 

and rested their arm on a desk. At the start of each condi-
tion, participants practiced writing two OOV and two in-
vocabulary phrases. Practice tasks throughout this paper 
were excluded from analysis. In each condition, participants 
received six OOV phrases and six in-vocabulary phrases. 
Participants saw a random subset of the phrase sets and 
never saw the same phrase more than once. The OOV and 
in-vocabulary phrases were mixed together at random. 
Participants could spend as long as they wanted memo-

rizing a phrase. The phrase disappeared and could not be 
referred to again once input began. After completing each 
transcription task, the participant was shown the reference 
text, the recognition text, their entry rate, and their error 
rate. If the error rate was above 5%, it was shown in red and 
the watch vibrated twice. 

Results 
Figure 3 displays the main results. Overall, participants used 
the lock feature. 11.8% of taps in Lock were long taps last-
ing over 500 ms compared to only 0.4% of taps in NoLock. 
This diference was statistically signifcant: dependent t-test, 
t(15) = 8.41, r = 0.91, p < .001. 

We measured the error rate using Character Error Rate 
(CER). CER is the number of character insertions, deletions, 
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Figure 3: Long tap percentage, error rate, and entry rate with 
and without letter locking in Experiment 1. 

and substitutions required to change the recognized text into 
the reference text, divided by the characters in the reference. 
Participants’ use of letter locking reduced their error rate: 
6.2% CER in NoLock versus 3.3% in Lock. This diference 
was signifcant: t(15) = −4.21, r = 0.74, p < .001. 

We measured entry rate using words-per-minute (wpm) 
with a word being fve characters including space. We calcu-
lated entry time from the frst tap on the keyboard screen 
until the participant moved to the next phrase. As might 
be expected, locking letters reduced input speed: 20.9 wpm 
in Lock versus NoLock at 23.2 wpm. This diference was 
signifcant: t(15) = −3.86, r = 0.71, p < .01. Recognition 
time was negligible, 0.055 s in Lock and 0.063 s in NoLock. 

Using left swipe to backspace tap events was infrequent in 
both conditions, 0.087 backspaces per character in the fnal 
text in NoLock and 0.081 in Lock. This diference was not 
signifcant: t(15) = −0.53, r = 0.14, p = 0.604. This indicates 
that despite often seeing visual feedback of incorrect nearest 
key text, participants tended to trust the auto-correction. 

For tasks in Lock where the words in the phrase matched 
the number of recognition events, we determined which 
words (if any) a participant locked. We also determined if 
all the letters were locked or just a subset. Of the words 
with any locked letters, 35% had all their letters locked. The 
most frequent words that had all their letters locked were, 
in decreasing order: bourre, brembo, auchinleck, haast, grig-
son, brofst, europe, delmon, evra, paak. The most frequent in 
which any letter was locked were: brembo, auchinleck, grig-
son, knapsacking, bourre, paak, europe, deano, luton, delmon. 
With the exception of europe and luton, all these words were 
OOV. We conjecture participants mistakenly thought these 
two words needed locking to force recognition in lowercase. 
We further analyzed participants’ lock letter behavior 

in the Lock condition. We measured the percentage of in-
vocabulary and out-of-vocabulary words where participants 
locked some letters (i.e. one or more) in a word and words 
where participants locked every single letter. Participants 
locked some letters in 4.8% of in-vocabulary words while they 
locked some letters in 75.6% of OOV words. This diference 

was signifcant: t(15) = −9.79, r = 0.93, p < .001. Partici-
pants locked all the letters in 2.1% of in-vocabulary words 
while they locked all the letters in 42.5% of OOV words. This 
diference was signifcant: t(15) = −5.71, r = 0.83, p < .001. 

To lock a letter, participants had to precisely target a key. 
This alone could lead to a lower error rate. To measure if 
our decoder changes to support locking actually improved 
recognition accuracy, we ran ofine experiments on the data 
from Lock. As in the user study, if the lock letter feature was 
turned on, the decoder locked the specifc letters in a word 
where a user’s tap exceeded the time threshold. If the lock 
letter feature was turned of, the decoder treated locked taps 
as normal probabilistic ones. We found turning the decoder 
feature of increased the error rate from 3.3% to 5.5%. Thus 
it was pinning portions of the observation sequence down 
that helped improve recognition accuracy. 
Thus it appears without any explicit instructions, users 

could accurately predict which words might be problematic 
for an auto-correcting virtual keyboard. This could stem from 
previous exposure to auto-correction errors using virtual key-
boards on mobile devices. It could also be that participants 
are singling out uncommon words based on their knowledge 
of English. An interesting observation is that participants 
often lock some but not all the letters in difcult words. We 
will analyze this in more detail in our fnal study. 

Open comments were in general supportive of the lock 
feature such as “More efective with the ability to lock char-
acters” and “Lock in is a vital feature for strange words and 
names.” However some noted locking felt slow or suggested 
alternatives, e.g.: “I wish there was a way to lock a specifc 
word after fnishing it rather than locking each letter” and “I 
liked the lock feature. I just wish it was faster.” In Experiment 
3, we address these issues by lowering the time threshold 
and adding a way to select the literal text typed. 

6 EXPERIMENT 2: SELECTION SLOT DESIGN 

In this section, we conduct computational experiments to 
help design our keyboard. We explore four slot options for 
aiding users to avoid and correct recognition errors: 

• Prefx slots — Word completions based on the cur-
rently noisy prefx input of a word. A user’s taps thus 
far are treated probabilistically during the search for 
likely word completions. 

• Best slots — Recognition alternatives based on all the 
pending taps. This is similar to a prefx slot other than 
the decoder is told to assume the taps represent an 
entire word and not necessarily a prefx. 

• Likely slots — Whatever hypotheses have the high-
est probability regardless of whether they are prefx 
completions or recognition alternatives. 

• Literal slot — The letters nearest to each tap. 
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Simulation and Test Data 

We simulated a user who made optimal use of any available 
selection slots to try and obtain a sentence’s reference text. 
For purposes of these experiments, we assume no use of other 
correction features such as backspacing and re-typing errors. 
We assume prefx predictions are made before even the frst 
letter of a word is typed. Predictions use the previous selected 
words as context to the language model. If the simulated 
user is unable to get the desired reference word during input, 
we use the most likely hypothesis. This simulates leaving 
such errors uncorrected, potentially negatively impacting 
the language model’s performance on future words. 
We measure performance using two metrics. The frst is 

the character error rate of the fnal text. The second is the 
potential keystroke savings. Keystroke savings (KS) is calcu-� � 
lated as KS = 1 − 

kp 
× 100% where kp is the keystrokes ka 

required with word predictions and ka is the keystrokes 
required without predictions. Higher keystroke savings is 
better. We assume slot selection requires one keystroke and 
adds any following space. 
We ran our simulation on 3,158 sentences of virtual key-

board data from the Small and Tiny keyboard conditions of 
[30] (collected on a Nexus 4 phone) and all conditions of [26] 
(collected on a Sony SmartWatch 3). Note that some of these 
conditions involved users typing multiple words without 
explicitly denoting the space between words. We converted 
the data to word-at-a-time input by force-aligning the input 
sequences with the reference transcript. 

Results 
We simulated all possible ways to set a given number of slots 
to the prefx, best, likely, or literal options. The literal option 
was either included or not. If a candidate design had N slots 
of some type, we used the N most likely hypotheses of that 
type. We never included the same word in multiple slots so 
when flling a slot, we continued down the hypotheses for 
that type ordered by probability until we found a new word. 
Before a word’s frst tap, there are no best or literal options. 
In this case, we flled all slots with prefx completions. 

Figure 4 shows the performance envelope of diferent slot 
designs. As expected, using more slots provides improved 
performance, but gains are marginal past fve slots. The 
points in the lower left of Figure 4 represent designs where 
most or all slots are best slots. This resulted in poor key-
stroke savings but provided the lowest error rates for a given 
number of slots. Note that some keystroke savings was still 
possible due to prefx completions at the start of words. 
For a given number of slots, the point with highest key-

stroke savings used most or all slots for prefx completions. 
The use of a literal slot in most cases resulted in worse perfor-
mance in terms of error rate and keystroke savings. This is 
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Figure 4: Performance of 2–6 slot virtual keyboard designs. 

Number of slots Keystroke 
Likely Prefx Best Literal savings CER 

0 0 2 0 8.4% 3.7% 
0 0 1 1 8.1% 4.1% 
0 1 0 1 27.6% 6.8% 
1 0 0 1 27.6% 6.8% 
0 0 4 1 12.9% 3.3% 
2 2 1 0 40.2% 3.5% 
3 0 1 1 38.5% 3.6% 
1 4 0 0 41.4% 3.8% 

Table 3: A selection of 2 and 5 slot designs. We selected the 
confguration in bold for our smartwatch keyboard. 

likely due to our test data consisting largely of Enron mobile 
phrases that had almost no OOV words. 

Table 3 shows a selection of operating points for two and 
fve slots keyboards (a complete list appears in our supple-
mentary material). For our keyboard, we decided on fve slots 
as it provided the majority of potential gains. Also a fve slot 
design allowed inclusion of a literal slot with only a small 
performance penalty. This was important as we wanted to 
compare a literal slot against our lock letter method. Further, 
fve slots allowed a visual layout in which a central option 
was surrounded by four other options. Out of the fve slot 
designs, we decided on using a literal slot, three likely slots, 
and one best slot. 
In Experiment 4, we will compare against a simpler two 

slot keyboard. With only two slots, using a literal slot re-
quires choosing to either optimize keystroke savings or error 
rate. Using a likely or prefx slot with a literal slot provided 
nearly identical performance. For the two slot keyboard, we 
decided on using a likely slot as it allows word completions 
early in entry that hopefully converge to the best hypothesis 
as the entire word is typed. This choice of slots is similar to 
the WatchWriter [8] smartwatch keyboard which also used 
one literal and one likely slot. 
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7 EXPERIMENT 3: VELOCIWATCH 

Based on Experiments 1 and 2, we designed a predictive vir-
tual keyboard named VelociWatch. VelociWatch provides 
fve text suggestions as well as a backspace action. In Experi-
ment 3, we compare using swipes versus taps to select these 
options. We conjectured given the limited interaction size of 
a smartwatch, swipe selection would be more accurate. 

Keyboard Design 

We placed prediction slots in the four corners above and 
below the text area (Figure 1 left). This allowed an easy 
mapping between the visual location of the slots and swipe 
selection actions. Swiping diagonally up and left anywhere 
on the screen selected the top-left suggestion, swiping up 
and right selected the top-right, and so on. This led us to 
put the backspace key on the left side to correspond to left 
swiping to erase the last letter. The top-left slot was used 
for the literal slot. Similar to many commercial keyboards, 
we placed the literal text in double quotes. The most likely 
prediction was in the upper-right, the second most likely in 
the bottom-left, and the third most likely in the bottom-right. 
We displayed the best recognition result in highlighted 

text in the text area. We worried placing a spacebar at the 
bottom of the keyboard would cause accuracy problems due 
to size limits and its proximity to the sensor edge and other 
letters. Spaces are common so having a sure way to type 
them is important, especially when other taps are treated 
probabilistically. We decided on a novel design in which the 
text area served as an implicit spacebar. This provided a large 
target away from the screen edge. It also felt natural to tap 
the highlighted best hypothesis in order to select it. 

As in Experiment 1, dwelling in the keyboard area resulted 
in a large preview of the letter. Based on feedback from 
Experiment 1, we lowered the lock letter time threshold to 
250 ms. The locked letters infuenced the decoder’s search 
and thus slots only showed suggestions complying with any 
locked letters. Before any input for a word, all four corner 
slots were populated with likely words given the previous 
text context. All slots updated every time the user typed a key. 
Recognition was performed on a separate thread so typing 
could proceed without waiting for recognition. Predictions 
were populated on average 91 ms after a key press. 

Each prediction slot was 14 mm × 3.3 mm. The backspace 
button was 4.2 mm × 8.3 mm. The text area was 24 mm × 
8.3 mm and could display three lines of text. After selecting a 
prediction, backspace, or the pending best text, the selected 
element would fash green to show which action was taken. 

For this experiment, we tuned the parameters of VelociTap 
on 1,104 sentences of data collected on a Sony SmartWatch 3 
in [26]. We used data from conditions in which participants 
had tapped one or two words prior to a recognition request. 

Study Procedure 

We recruited 24 participants via convenience sampling. None 
had participated in the previous study. Participants took part 
in a one-hour session and were paid $10. 22 participants were 
right-handed. Participants were aged 18–22 (mean 19.3). 15 
participants identifed as male, 6 female, and the rest did not 
answer. 13 participants had never used a smartwatch, 8 used 
one occasionally, and 3 used one frequently. 18 participants 
had not entered text on a smartwatch, 2 used speech recog-
nition, and 4 used tap gestures on a QWERTY keyboard. 
This was a within-subject experiment with three coun-

terbalanced conditions. In the Tap condition, the best slot, 
the backspace, and the four likely/literal slots all had to be 
tapped. In the Swipe condition, the best slot was selected by 
right swipe, the backspace was selected by left swipe, and 
the four likely/literal slots were selected by diagonal swipes. 
In the Hybrid condition, the best slot was selected by right 
swipe, the backspace was selected by left swipe, and the four 
likely/literal slots were tapped. 

Participants were frst shown a short video demonstrating 
all the features of VelociWatch. This video showed both the 
swipe and tap actions for all features. At the start of each 
condition, participants were told whether swipe or tap was 
enabled for each feature. Participants wrote OOV and in-
vocabulary Twitter phrases as in Experiment 1 except they 
wrote two practice phrases and 10 evaluation phrases. After 
each condition, participants completed a questionnaire. 

Results 
Figure 5 shows the main results. Overall, participants wrote 
at about the same speed in all three conditions: 17.7 wpm 
in Tap, 17.8 wpm in Swipe, and 17.4 wpm in Hybrid. This 
diference was not statistically signifcant: repeated measures 
ANOVA, F2,46 = 0.26, p = 0.78. The entry rate across all 
conditions for the in-vocabulary phrases was 21.3 wpm while 
for OOV phrases it was 13.9 wpm. Thus it appears users 
either slowed down their typing or had to perform corrective 
actions for the more difcult words. 
We measured the error rate of the fnal text of each task 

after any user correction. Error rates were overall low: 3.2% 
CER in Tap, 3.4% in Swipe, and 2.1% in Hybrid. This difer-
ence was not signifcant: F2,46 = 2.13, p = 0.13. The error rate 
across all conditions for the in-vocabulary phrases was 2.0% 
CER while for OOV phrases it was 3.7%. This could mean that 
despite the error correction features, participants still could 
not obtain the specifed text. Alternatively, harder phrases 
may have been more difcult to remember for participants. 

We anticipated the small slot targets would result in more 
backspacing to correct errors resulting from errant selections. 
This did not seem to be the case, backspaces per character 
was similar in all conditions: 0.137 in Tap, 0.137 in Swipe, 
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and 0.151 in Hybrid. This diference was not signifcant: 
F2,46 = 4.16, p = 0.66. There was an increase in backspacing 
to 0.142 compared to 0.086 in Experiment 1 (averaged across 
conditions). Thus it appears participants were backspacing 
to some degree to correct erroneous slot selections. 

Across all conditions, 3.3% of taps were over the lock letter 
threshold of 250 ms. This is a marked decrease from the 12% 
observed in the Lock condition of Experiment 1. This is 
likely due to competing ways to obtain the correct text via 
VelociWatch’s slots. The lock letter feature appeared popular 
with some users but not others; half of users locked less than 
1% of letters while the other half locked 1–14%. 

Averaged over all conditions, we found participants se-
lected the best slot 68% of the time, one of the likely slots 
22% of the time, and the literal slot 10% of the time. For 
in-vocabulary phrases, the ratio of best, likely, and literal 
slot usage was 71%, 26%, and 3% respectively. But for OOV 
phrases, it was 65%, 19%, and 16%. While the literal slot was 
not that advantageous in Experiment 2, on more difcult text 
it became important for avoiding the auto-correct trap. 
VelociWatch supports entering multiple words without 

spaces. 95.9% of slot selections were a single word, while 4.2% 
had multiple words. Just because the decoder inferred a multi-
word result does not mean that was a user’s intent; it could 
be a recognition error. We found 1.5% of the selections were 
a correct multi-word substring of the reference phrase. This 
indicates the decoder may have inserted spaces too freely. 
Further, only fve participants selected correct multi-word 
results for more than 1% of their selections. These results 
suggest most participants preferred word-at-a-time entry. 

When a likely slot was selected, we tallied how many taps 
a participant made prior to the selection: 0 taps 8.4%, 1 tap 
6.5%, 2 taps 10.2%, 3 taps 14.6%, 4 taps 19.5%, 5 taps 11.6%, 6 
taps 8.6%, 7 or more 20.6%. Thus occasionally making pre-
dictions before the start of the word was useful. Participants 
commonly typed several letters prior to selection. 
On a 7-point Likert scale where 7 is strongly agree, the 

mean rating for the statement “I entered text quickly” was 5.2 
in Tap, 5.4 in Swipe, and 5.6 in Hybrid. This diference was 
not signifcant, Friedman’s test, χ 2(2) = 1.13, p = 0.57. The 
mean rating for the statement “I entered text accurately” was 
5.5 in Tap, 5.1 in Swipe, and 5.5 in Hybrid. This diference 
was not signifcant, Friedman’s test, χ 2(2) = 1.19, p = 0.55. 

In open comments, some participants preferred swiping 
while other preferred tapping. A few participants commented 
they swiped when they were suppose to tap or vice versa. 
At the end of the study, participants specifed their preferred 
method: 38% selected Swipe, 33% selected Hybrid, and 29% 
selected Tap. We asked participants how they dealt with dif-
fcult text. 15 participants commented specifcally that they 
used the letter lock feature. Less common themes included 
checking the suggestions and using the literal text. 
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Figure 5: Entry rate, error rate, and backspaces per output 
character in Experiment 3. 

8 EXPERIMENT 4: TWO SLOT KEYBOARD 
COMPARISON 

In Experiment 3, there was no clear speed or accuracy ad-
vantage to swipe or tap selection. Given users were mixed 
in their preference, we decided to enable both swipe and 
tap functionality in Experiment 4. Further, we wanted to see 
how users would perform selections if given both options. 
In Experiment 3, we observed users frequently backspaced 
entire words. We added a feature allowing users to delete an 
entire word by long tapping on backspace. This resulted in a 
keyboard with a range of error correction features. In this 
section, we compare VelociWatch with a simpler keyboard 
that ofers only a limited set of features. 

Simpler Keyboard Design 

The simpler keyboard has three options: the most likely 
word hypothesis on the left, the literal text in the middle, 
and a backspace button on the right (Figure 1 right). The 
most likely hypothesis could be either a prefx completion 
or a recognition alternative. We search for both types of 
hypotheses and use the one with highest probability. The 
backspace button deletes all pending letters for the current 
word. If there are no pending letters, it deletes the previous 
word. Note this design has no way to delete an individual 
character. Thus the keyboard could propose an incorrect 
prefx completion based on a user’s completed noisy input 
of a word. In this case, the user’s only recourse would be to 
start the word over. 

We reduced the available input options and reduced visual 
clutter in a number of ways. We did not allow multi-word 
input. We also did not populate the slots until the frst letter 
was typed. We turned of the lock letter feature and the key 
preview. The keyboard area was the same as VelociWatch. 
Prediction slots were 11.4 mm × 3.3 mm. The backspace key 
was 5.5 mm × 3.3 mm. We displayed up to three lines of text. 
Our design closely resembles the WatchWriter [8] interface 
except our keyboard was designed for a rectangular form 
factor and did not implement gesture-keyboard input. 
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Figure 6: Entry and error rates in Experiment 4. Results over 
all phrases and the in-vocabulary (IV) and OOV phrases. 

Study Procedure 

We recruited 14 participants via convenience sampling. None 
had participated in previous studies. Participants took part in 
a one-hour session and were paid $10. 13 participants were 
right-handed. Participants were aged 18–22 (mean 19.2). 10 
participants identifed as male, 3 female, and 1 did not an-
swer. 6 participants had never used a smartwatch, 7 used one 
occasionally, and 1 used one frequently. 10 participants had 
not entered text on a smartwatch, 2 used speech recognition, 
and 1 used tap and swipe gestures on a QWERTY keyboard. 
This was a within-subject experiment with two counter-

balanced conditions: In the VelociWatch condition, par-
ticipants used the VelociWatch keyboard. In the TwoSlot 
condition, participants used the two slot keyboard. 
At the start of the study, participants watched a video 

demonstrating the keyboard assigned to their frst condition. 
They then wrote four practice phrases using that keyboard. 
We then showed a video demonstrating the other keyboard 
and they wrote four practice phrases with that keyboard. Par-
ticipants then wrote 10 OOV and 10 in-vocabulary phrases 
in each condition using a procedure similar to Experiment 3. 
After each condition, they completed a questionnaire. 

Results 
Figure 6 and Table 4 show our main results. Much to our 
surprise, participants wrote faster in TwoSlot at 20.6 wpm 
versus VelociWatch at 17.3 wpm. This diference was statis-
tically signifcant: t(13) = 3.78, r = 0.72, p < 0.01. Averaged 
across conditions, entry rate was substantially faster for in-
vocabulary phrases at 22.3 wpm versus 15.5 wpm for OOV 
phrases. VelociWatch was slower than TwoSlot for both 
in-vocabulary and OOV phrases. We conjecture overheads 
associated with monitoring the additional slots or locking 
letters contributed to the slower entry rates in VelociWatch. 
Error rate was similar in both conditions with a CER of 

3.0%. This diference was not signifcant: t(13) = −0.11, 

Condition Entry rate (wpm) Error rate (CER) 
All IV OOV All IV OOV 

VelociWatch 17.3 20.6 14.0 3.0% 1.9% 4.2% 
TwoSlot 20.6 24.1 17.1 3.0% 1.5% 4.4% 
average 18.9 22.3 15.5 3.0% 1.7% 4.3% 

Table 4: Entry and error rates in Experiment 4. Results over 
all phrases and the in-vocabulary (IV) and OOV phrases. 

Some letters locked All letters locked 
Input Reference Input Reference 
knovKAERT knockaert OZZY ozzy 
breXit brexit HAAST haast 
xgOPT chopt BROFIST brofst 
wEEzer weezer SEVCO sevco 
DESIIgner desiigner AUCKENLECH auckenlech 

Table 5: Example words where users locked some or all of 
the letters. Locked letters are shown in uppercase. Lower-
case letters show the letter nearest to each non-locked tap. 

r = 0.03, p = 0.91. Averaged across conditions, CER was sub-
stantially higher for OOV phrases at 4.3% versus 1.7% for in-
vocabulary phrases. VelociWatch and TwoSlot had similar 
error rates for the in-vocabulary and OOV phrases. It is sur-
prising that despite TwoSlot having only a coarse-grained 
word deletion feature, participants achieved acceptable error 
rates on challenging text. 

Both interfaces supported deleting all pending input or a 
previous word. This feature was used frequently at 1.4 times 
per phrase in TwoSlot, but was only used 0.03 times per 
phrase in VelociWatch. It seems participants either pre-
ferred to backspace one letter-at-a-time, or did not learn this 
feature. Only VelociWatch allowed backspacing of indi-
vidual letters. Participants used 0.12 backspaces per output 
character, similar to what we observed in Experiment 3. 
In VelociWatch, participants used long taps to lock let-

ters 3.0% of the time, similar to Experiment 3. We analyzed 
all the individual recognition events that had one or more 
taps in VelociWatch. 4.8% of words had at least one letter 
locked. 1.5% of words had all their letters locked. Table 5 
shows some samples of each case. 

Participants selected the best slot 46.4% of the time, one of 
the likely slots 38.4% of the time, and the literal slot 15.2% of 
the time. In TwoSlot, participants used the likely slot 61.9% 
of the time and the literal slot 38.1% of the time. It seems 
without other correction features, participants in TwoSlot 
often relied on careful typing and using the literal slot. 
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In VelociWatch, 60.3% of selections used tap while 39.7% 
used swipe. For tap selections, 37.8% were for a likely or lit-
eral slot, 27.7% for the best slot, and 34.5% for backspace (char-
acter or word). For swipe selections, 10.0% were for a likely 
or literal slot, 6.2% for space, and 83.7% for backspace. Thus 
when allowed to either tap or swipe, participants tended to 
use tap, but swipe use was still frequent especially for eras-
ing previous characters. This suggests a virtual keyboard 
designer may want to consider adding swipe actions for 
some operations. 

In VelociWatch, 91.9% of selections had one word while 
8.1% had multiple words. The majority of multi-word recog-
nitions matched the reference, 5.7% of total selections. This 
increase from Experiment 3 was driven by three participants 
who used multi-word input for 10%, 22%, and 40% of inputs. 

On a 7-point Likert scale where 7 is strongly agree, the 
mean rating for the statement “I entered text quickly” was 5.1 
in VelociWatch and 5.4 in TwoSlot. This diference was 
not signifcant, Friedman’s test, χ 2(1) = 0.82, p = 0.37. The 
mean rating for the statement “I entered text accurately” was 
4.8 in VelociWatch and 4.6 in TwoSlot. This diference 
was not signifcant, Friedman’s test, χ 2(1) = 0.00, p = 1.00. 

Eight participants preferred VelociWatch while six pre-
ferred TwoSlot. Participants preferring VelociWatch cited 
reasons such as lock letter, swipe, more suggestions, and 
character backspace. Participants preferring TwoSlot said it 
was simpler, had fewer options to scan, and resembled famil-
iar keyboards. Common strategies mentioned for entering 
difcult words included typing slowly and locking letters. 

9 DISCUSSION AND LIMITATIONS 

Our most interesting fnding was that the simple two slot 
keyboard out-performed our more feature-rich keyboard that 
we painstakingly designed via computational and user exper-
iments. It did this for the input of difcult text in which half 
the phrases involved OOV words. This is quite remarkable 
since these OOV words were unlikely to be correctly pre-
dicted by the decoder. This left the user with only one choice: 
tap every letter of a word correctly with zero mistakes on a 
smartwatch. Due to the keyboard only having a word-level 
backspace, any errant tap required starting the entire word 
over. On just the OOV phrases, participants achieved an 
acceptable error level of 4.4% while still typing at 17.1 wpm. 
When asked how they handled difcult words, 8 of the 

14 participants mentioned they slowed down. This is cor-
roborated by an analysis of the logs fles. When entering 
in-vocabulary words using TwoSlot, participants wrote 
at 23.0 wpm. When entering OOV words, they slowed to 
14.5 wpm. For OOV words, participants used the literal slot 
84.7% of the time. For in-vocabulary words, they only used 
the literal slot 33.2% of the time. It appears participants could 
often enter OOV words simply by carefully tapping each 

letter and selecting the literal slot. It appears that even on 
a small virtual keyboard, users were able to exactly target 
all the letters of many words without the help of an auto-
correct algorithm. This suggests precise target acquisition 
on capacitive touchscreens may not be that big of a problem. 
As shown in Table 4, entry rates slowed substantially 

for phrases with an OOV word. Supporting faster entry for 
OOVs is challenging since users often slow down to be more 
accurate, a motor control reality. Reducing overheads as-
sociated with letter locking could speed entry, e.g. using a 
lower time threshold or using an input signal that is not time 
dependent such as force. Avoiding OOVs in the frst place 
by expanding the vocabulary could also be advantageous. 
However, this requires care as we only want to add words 
that are new proper names or slang while avoiding adding 
words that are simply typos. Adapting the language model 
could also help here, allowing more approximate input of 
OOVs once a user has typed an OOV several times. 

Our participants consisted of university-age students with 
substantial touchscreen typing experience. The mean rat-
ing for the statement “I frequently enter text on a mobile 
phone” was 6.7 (where 7=strongly agree). Despite half our 
participants having never used a smartwatch, they seemed 
to quickly learn to accurately target keys on its small touch-
screen. Participants also seemed quite capable of anticipating 
auto-correction problems. This is likely a result of substantial 
frst-hand experience. It remains to be seen if such precise 
typing or error awareness holds for a broader population or 
in more challenging scenarios (e.g. typing while walking). 
Our studies all consisted of a single one-hour session. It 

is possible VelociWatch would become faster with practice. 
However, it is also possible inherent cognitive overheads 
related to monitoring more suggestion slots or deciding be-
tween corrective options slowed performance. While our 
design ofered a theoretical keystroke savings of 39%, this as-
sumes users always notice correct predictions. These aspects 
were not modeled as part of the computational-driven design 
of our interface. It would be interesting, but challenging, to 
incorporate such aspects into the simulations. 

In Experiment 4 using VelociWatch, users locked only 3% 
of taps and the delete word feature was rarely used (0.03 times 
per phrase). Users preferred to delete characters instead. The 
simpler keyboard could delete only entire words. It could be 
that by forcing users to correct by deleting an entire word and 
retyping actually was faster in comparison to backspacing 
character-by-character. This suggests the delete word feature 
may need to be more prominent and faster to trigger. 
We designed our keyboard for entering challenging text 

on a small touchscreen. Our choices may not be optimal for 
larger devices or for the input of more predictable text. There 
is scope for designs between our two keyboard interfaces. 
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Participants indicated they would have liked some of Ve-
lociWatch’s features in the simpler two slot keyboard. This 
included backspacing individual letters, the option to swipe, 
and the ability to lock letters. Adding a targeted set of such 
features could result in a keyboard that performs better on 
challenging text than either of the two designs we tested. 

10 CONCLUSIONS 

We presented a new phrase set of memorable Twitter mes-
sages that provides challenging text for evaluating text entry 
interfaces. We investigated a new letter locking feature that 
allows users to take control of the recognition process. In 
our frst user study, we found that users had a good sense of 
what words would be difcult for the auto-correct algorithm. 
Letter locking provided improved recognition accuracy with 
modest reductions in entry rate. We used data from thou-
sands of sentences typed on small virtual keyboards to ex-
plore what suggestions to ofer on a virtual keyboard. We 
found using a literal slot, the best recognition hypothesis, 
and three likely alternatives ofered the best potential of fast 
and accurate input. 
Combining our letter locking feature and our selection 

slot fndings, we designed a smartwatch keyboard. We in-
vestigated using swipes rather than taps for selecting the 
keyboard’s suggestions. We also tested using the text area 
as a large implicit spacebar. In our second user study, partic-
ipants performed similarly using swiping or tapping. User 
opinion was mixed with some preferring swiping and some 
preferring tapping. 
In our fnal user study, we compared our VelociWatch 

keyboard against a simpler keyboard with only two sugges-
tion slots. Empirically, the simpler keyboard was faster at 
20.6 wpm compared to our keyboard at 17.3 wpm. Both key-
boards achieved a low corrected error rate of 3.0%. We think 
this is impressive performance given the challenging nature 
of our phrases and the noisy input resulting from a small 
touchscreen. Despite the somewhat slower entry rate, par-
ticipants perceived VelociWatch to be of similar speed and 
accuracy. The majority subjectively preferred VelociWatch. 
The performance of the simpler keyboard suggests accurate 
typing for occasional difcult words may be possible even 
without auto-correction. 
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