
VelociWatch: Designing and Evaluating a Virtual
Keyboard for the Input of Challenging Text

Keith Vertanen, Dylan Gaines, Crystal Fletcher, Alex M. Stanage, Robbie Watling, Per Ola Kristensson
Department of Computer Science Department of Engineering

Michigan Technological University University of Cambridge

Houghton, Michigan, USA Cambridge, United Kingdom

{vertanen | dcgaines | tafetch | amstanag | rwatling}@mtu.edu pok21@cam.ac.uk

ABSTRACT

Virtual keyboard typing is typically aided by an auto-correct
method that decodes a user’s noisy taps into their intended
text. This decoding process can reduce error rates and pos-
sibly increase entry rates by allowing users to type faster
but less precisely. However, virtual keyboard decoders some-
times make mistakes that change a user’s desired word into
another. This is particularly problematic for challenging text
such as proper names. We investigate whether users can
guess words that are likely to cause auto-correct problems
and whether users can adjust their behavior to assist the
decoder. We conduct computational experiments to decide
what predictions to ofer in a virtual keyboard and design
a smartwatch keyboard named VelociWatch. Novice users
were able to use the features of VelociWatch to enter chal-
lenging text at 17 words-per-minute with a corrected error
rate of 3%. Interestingly, they wrote slightly faster and just
as accurately on a simpler keyboard with limited correction
options. Our fnding suggest users may be able to type dif-
fcult words on a smartwatch simply by tapping precisely
without the use of auto-correct.

CCS CONCEPTS

• Human-centered computing → Text input.

KEYWORDS

Text entry; virtual keyboard; decoder; smartwatch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for proft or commercial advantage and that copies bear
this notice and the full citation on the frst page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specifc permission and/or a fee. Request
permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300821

ACM Reference Format:
Keith Vertanen, Dylan Gaines, Crystal Fletcher, Alex M. Stanage,
Robbie Watling, Per Ola Kristensson. 2019. VelociWatch: Designing
and Evaluating a Virtual Keyboard for the Input of Challenging Text.
In CHI Conference on Human Factors in Computing Systems Proceed-
ings (CHI 2019), May 4–9, 2019, Glasgow, Scotland UK. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3290605.3300821

1 INTRODUCTION

Text entry is a ubiquitous computing activity. As interaction
moves from desktop computers to mobile phones, smart-
watches, and optical see-through head-mounted displays,
the need for fast and accurate text entry remains. A particu-
lar challenge is the inherently noisier input that a text entry
system has to deal with as text entry methods move beyond
physical full-sized keyboards. Such physical keyboards ac-
commodate ten-fnger typing and provide tactile feedback.
When such keyboards are transplanted to small touchscreens,
the lack of tactile sensation feedback and small form factor
result in increased noise as users’ input becomes less precise.

A popular solution is to use an auto-correct algorithm to
rectify typing mistakes. The algorithm’s job is to infer the
most likely intended text from a user’s noisy input. When
this method is probabilistic, it is called a decoder. The decoder
searches for the most probable text hypothesis given an un-
certain observation sequence. This is possible because natural
languages are highly redundant with most letter sequences
being improbable. Valid letter sequences can be captured by
a statistical language model. The decoder’s search for the
most likely text is guided by this language model.

A well-designed decoder can help users reduce their error
rate. This may also increase their entry rate by allowing
faster and less precise typing. However, decoding can also
result in unexpected results. When the decoder is carrying
out its search, it is relying heavily on its language model.
Thus if the user’s intended text is similar to the text the
language model has been trained on, the probability is high
that the decoder will return the correct text. The fip-side is
that if the user is writing text that is not well-represented
in the language model, the decoder may return erroneous
text. This results in the user being unexpectedly exposed to

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 1

https://doi.org/10.1145/3290605.3300821
https://doi.org/10.1145/3290605.3300821
mailto:permissions@acm.org

Figure 1: Entering text on the VelociWatch keyboard (left)
and on a simpler version of the keyboard (right).

an incorrect word, which has to be manually corrected. This
“auto-correct trap” [31] increases error rates, reduces entry
rates, and increases user frustration.

To investigate how to help users avoid and correct recog-
nition errors, we created VelociWatch, a virtual keyboard
optimized for the input of challenging text. We will compare
the interface we designed (Figure 1 left) with a simpler ver-
sion with more limited correction features (Figure 1 right).

Challenging Text Input
We specifcally want to study interface designs that help
users avoid or fuidly correct auto-correction errors. How-
ever, most text entry evaluations have users copy easy to
remember text such as the MacKenzie phrase set [20] or the
Enron mobile data set [28]. As we will show, these phrase sets
are quite predictable under a well-trained language model.
Combining a good language model with a high-performance
decoder results in user evaluations in which participants
rarely face recognition errors. We will frst design a new
phrase set containing text that is harder for a decoder to
infer, thus serving as a more challenging evaluation task.

Aside from using challenging phrases, we also wanted to
collect data with substantial input noise. Thus we conducted
our investigation on a smartwatch. The small form factor
makes precise typing difcult. Nevertheless, it is feasible to
type on a full QWERTY virtual keyboard on a smartwatch
if typing is aided by a decoder. Due to its reliance on de-
coding for efective text entry, we argue a smartwatch is
a good testbed for investigating decoder and interface im-
provements. In the future we anticipate such harder cases
of keyboard decoding will be even more relevant as users
transition from mobile phones to wearable devices that rely
on noisy sensing methods such as depth cameras.

Error Avoidance via Leter Locking

Many users today have substantial experience with touch-
screen keyboards and their associated recognition errors.
Even without intimate knowledge of how a decoder works,

we conjectured users may often know a priori when an error
is about to occur. To test this, we designed a simple error
avoidance technique to see if users could anticipate prob-
lematic words and change their input behavior. Our letter
locking method transfers control of the decoding process
to the user. When a decoder considers a single observation
(i.e. a touch point), it will explore diferent hypotheses for
the observation (e.g. all letters adjacent to the key typed).
When the user locks a letter, the decoder is prevented from
performing this exploration and the hypothesis is fxed to
the key touched. To assist users in locking the right letter,
the nearest letter to a user’s touch location is shown in a
large font. The user locks the letter by maintaining contact
with the touchscreen for an extended duration. After a time
threshold has been exceeded, the preview changes color and
the device vibrates to indicate the letter has been locked.
Letter locking allows a user to fuidly switch control be-

tween the decoder and the user. A user can take control of
how each letter is input and thereby either override decoding
altogether by locking every letter in the word, or steer the
decoder by locking a subset of the letters in a word. Using
our new phrase set, we show in Experiment 1 that users
can anticipate difcult words and lock letters to signifcantly
reduce their error rate at a modest reduction in entry rate.

Error Avoidance and Correction via Selection Slots
Virtual keyboards often display a number of selection slots
above the QWERTY layout. Users tap a slot to take a certain
action such as completing the word currently being typed or
using the literal text nearest to each tap observation. While
the use of selection slots is common in commercial keyboards
and some research interfaces (e.g. [8]), we are not aware
of any work comparing the efcacy of the many possible
designs. It would be onerous to user test the many diferent
options. Instead, in Experiment 2 we conduct simulations
on data collected from previous studies on small form-factor
virtual keyboards. By simulating optimal use of the slots, our
work helps interface designers decide what slot-based error
avoidance and correction features to include.

Tap versus Swipe Selection

As we will see, our ofine experiments support including a
rich set of error avoidance and correction options. Providing
numerous error avoidance and correction features not only
consumes valuable screen real estate, but also requires a way
for users to select the diferent options. Ideally these features
are selectable with little risk of making a selection error.
This helps avoid a cascade of errors that can be extremely
detrimental to text entry performance [13].
Virtual keyboards can support the input of entire words

by a continuous swipe gesture [35]. They can also support
other functionality via swipe such as using a right swipe to

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 2

recognize pending input [26, 30] or to control other keyboard
functions [11]. Swipes have also been used to correct speech
recognition errors [17, 22, 27]. We wondered if swipes could
enhance selecting a small number of actions on a virtual
keyboard. In Experiment 3, we explore swipe versus tap
selection on a smartwatch keyboard we call VelociWatch.

Simple versus Complex Design

Our experiments led to the design of a reasonably complex
keyboard squeezed onto a small touchscreen device. Having
too many options could cause overheads that might actu-
ally reduce real-world performance. For example, users may
spend too much time checking prediction slots. Also, users
might simply prefer a design with fewer options or that con-
sumes less screen space. In Experiment 4, we compare our
best design with a simpler one with fewer features.

Contributions
(1) We create a new phrase set for exploring challenging

text entry. Little work has investigated the input of
difcult text. We are the frst to do this combined with
the challenging form factor of a smartwatch.

(2) In a study with 16 users, we show that users can pre-
dict words that will likely be problematic for a virtual
keyboard decoder. Further, we show that users can
adjust their input to help the decoder avoid errors.

(3) We compare 135 keyboard designs in computational
experiments on 3 K recorded sentences. We show for
the frst time the impact of a literal slot (a common
feature in commercial keyboards). We are not aware of
any comparison of this scale on the role of prediction
slots based on actual touchscreen typing data.

(4) In a study with 24 users, we compare tap and swipe se-
lection of small touchscreen targets. While we thought
swipe selection would be better, both performed simi-
larly. This is a surprising and useful result; many smart-
watch text entry interfaces have been designed around
avoiding small buttons (e.g. [3, 10, 12, 23]).

(5) In a study with 14 users, we compare our VelociWatch
keyboard against a simpler keyboard with only limited
correction options. We found on the simpler keyboard
users could modulate their typing to be accurate, rely-
ing on a literal slot to avoid the auto-correct trap. This
is further evidence that small targets may be viable.
The study also brings out interesting questions regard-
ing cognitive overheads and correction behavior.

2 RELATED WORK

Mobile text entry methods have been extensively researched
[19, 21, 37]. Today virtual keyboards dominate mobile touch-
screen devices. Virtual keyboard typing can be improved

using decoders. Goodman et al. [7] proposed a substitution-
only decoder which corrects typing errors using a combi-
nation of a touch model and a language model. Kristensson
and Zhai [16] proposed correcting keyboard typing using
geometric pattern matching. Clawson et al. [4] presented a
correction method for physical thumb keyboards based on
key timings. An orthogonal approach to decoding keyboard
typing is the gesture keyboard [15, 34, 36] in which users
gesture through all the letters of a word on the keyboard.
Text entry and virtual keyboard typing have also been

investigated for smartwatches (see [1] for a survey). Early
interfaces focused on techniques to allow users to determinis-
tically select the tiny keys on a smartwatch (e.g. ZoomBoard
[23], Swipeboard [3], SplitBoard [12], and DualKey [10]).
Other interfaces such as WrisText [6] and InclineType [9] al-
low users to enter text using wrist movements. The frst study
to demonstrate the viability of recognition-based typing on a
smartwatch form-factor full QWERTY keyboard was the sys-
tem VelociTap [30]. VelociTap used a decoder to infer users’
intended text. Gordon et al. [8] later demonstrated Watch-
Writer, a smartwatch keyboard with decoder-supported tap
input, gesture-keyboard input, and word prediction. Watch-
Writer uses two suggestion slots. One has the literal text
typed by the user while the other contains the decoder’s
most likely prediction. Other smartwatch studies include Yi
et al. [33] and Turner at al. [25].
Weir et al. [31] proposed improving decoding using two

techniques. The frst technique was to use Gaussian Process
regression to create a more accurate touch model. The second
technique was to allow users to continuously regulate their
uncertainty using pressure. The harder a user pressed on a
keyboard key, the less likely the decoder would change the
key press into another key. This allowed users to regulate
their uncertainty since pressing harder would concentrate
the probability mass near the contact point while exerting
low pressure would spread out the probability mass across
many keys and thereby allow the decoder to search wider.

Arif and Stuerzlinger [2] used the time and/or movement
signal in a touchscreen tap to infer if a user had tapped with
additional pressure. They tested a keyboard that used a tap
with additional pressure to bypass incorrect predictions. For
the input of phrases with some out-of-dictionary words, this
approach increased entry rate and decreased error rate.
In this paper we also allow users to regulate their uncer-

tainty, but our design is diferent from prior work in two
ways. First, letter locking is a discrete binary technique which
either fxes a letter or leaves the decoder free to replace it.
This means the efect of locking letters is easy to understand.
Additionally, since individual letters can be locked, users can
type quickly in the portion of a word that is likely easy to
predict, while slowing down in more difcult areas (e.g. the
“ii” in “desiigner”). Second, letter locking is accompanied by

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 3

clear visual and vibration interface feedback. This allows the
user to be confdent that a letter has indeed been locked. Due
to these factors, we conjecture users will have an additional
sense of agency in controlling the decoder.

Weir et al. [31] also investigated whether users could pre-
dict if a decoder would be able to correctly infer a phrase or
not. They found that for phrases that were correctly inferred,
users generally had a high ability to predict the outcome.
However, for phrases that were incorrectly inferred, users
tended to overestimate the ability of the decoder.
Text entry methods are typically evaluated using a tran-

scription task in which participants copy memorable phrases
as quickly and as accurately as possible. MacKenzie and
Soukoref [20] created a standard phrase set to improve
the replicability of studies. Their phrase set consists of 500
phrases designed to be memorable, although this was never
tested. Vertanen and Kristensson [28] later presented a phrase
set verifed to be memorable based on emails written by En-
ron employees on their BlackBerry mobile devices. A study
later showed there was no signifcant diference in entry or
error rates between these two phrase sets [14], although the
latter has higher external validity.

In our studies, we required participants to memorize phrases
as the smartwatch’s screen size precluded showing phrases
during text entry. Memorization results in somewhat faster
entry rates at the cost of somewhat increased error rates
[14]. As is common in text entry studies, we used memo-
rization since we feel it is more similar to real-world input.
A composition task would be even more realistic [29], but
makes error rate harder to measure. Further, we worried
participants might compose only easy-to-recognize text.
There has also been research on sampling memorable

and representative phrases across languages [18, 24]. Yi et
al. [32] proposed a word clarity metric based on geometric
pattern matching [16] for sampling phrases containing words
that might be confused due to their geometric proximity. In
contrast, we present phrases designed to be easy or hard to
recognize for a decoder that uses a statistical language model
to guide its search. We will do this by selecting phrases based
on whether they include out-of-vocabulary words which are
harder for the decoder to recognize.

3 CHALLENGING PHRASE SET

We wanted phrases that would be challenging to recognize
while still being memorable. We sourced our phrases from
Twitter messages sampled during 2016. We parsed the tweets
to fnd likely sentences based on capitalization and end-of-
sentence punctuation. We generated a banned word list of
1,706 obscene words semi-automatically from a variety of
sources. We removed sentences containing a banned word.

For text entry evaluations, typically we aim for memorable
phrases to avoid participants needing to refer to the phrase

In-vocabulary phrases Out-of-vocabulary phrases
I’m prettier than you. Ready to meet Nanook!
Woke up still Loving y’all. I voted for Brexit.
I want a Margarita. Atletico ties it up!
This debate calls for vodka. Is Rafa playing today?

Table 1: Examples from our challenging Twitter phrase set.

during entry. Longer sentences are normally more difcult
to memorize, so we removed sentences with more than 10
words. As in the MacKenzie phrase set [20], we focused on
sentences with four or more words. Using a word list of 100 K
English words, we created a set of 1.04 M sentences where all
words were in-vocabulary. We created a second set of 141 K
sentences that had a single out-of-vocabulary (OOV) word.
We felded a random subset of 850 of these sentences to

three to fve Amazon Mechanical Turk workers. We only
kept sentences that the majority of workers rated as easy
to understand, judged as having no spelling errors, and that
workers could type from memory with no errors (ignor-
ing case and punctuation). These sentences were further
manually reviewed by one of the authors to remove any re-
maining ofensive sentences. The fnal phrase set had 213
OOV phrases (denoted TwitterOOV) and 194 in-vocabulary
phrases (denoted TwitterIV)1.
Table 1 shows some example phrases. The OOV phrases

are the challenging part of the phrase set. We included the
in-vocabulary set for comparative purposes. Phrases are in
mixed case consisting of the letters A–Z plus apostrophe,
comma, question mark, exclamation mark, and period.
One way to measure a text’s difcult is the frequency of

OOV words. Another way is to measure its perplexity under
a language model. Perplexity measures the average num-
ber of possible next tokens (typically words or characters)
given the previous tokens. Lower perplexity means the text
is generally easier to recognize. We compared the perplexity
of our new phrases against the MacKenzie phrase set [20]
(denoted MacKenzie) and the mem1-5 sets from the Enron
mobile data set [28] (denoted EnronMem). For all sets, we
removed sentences with numbers and stripped punctuation
aside from apostrophe.

To measure average per-character perplexity, we used the
character language model employed by our decoder (to be
discussed shortly). As shown in Table 2, our TwitterOOV
had the highest perplexity. Thus we anticipate it should be
suitably challenging in comparison to other common phrase
sets. We also computed the percentage of words that were
OOV with respect to our 100 K word list. All phrase sets had
nearly no OOV words except for the TwitterOOV set.

1http://keithv.com/data/twitter-phrases.zip

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 4

http://keithv.com/data/twitter-phrases.zip

Phrase set Perplexity OOV rate Words / phrase
TwitterIV 3.65 0.00% 6.69
TwitterOOV 5.34 14.71% 6.80
MacKenzie 4.59 0.07% 5.43
EnronMem 3.96 0.10% 5.31

Table 2: The per-character perplexity, percentage of words
that were out-of-vocabulary (OOV), and words per phrase
in diferent phrase sets.

We also note how EnronMem is more predictable on a per-
character basis than MacKenzie. While in prior work [14]
the choice of phrase set did not impact user performance in
crowdsourced experiments on desktop keyboards, these re-
sults suggest language model-based input methods may also
want to consider the predictability of phrases. Specifcally,
recognition-based input systems evaluated on EnronMem
may appear more accurate in comparison to other systems
evaluated on the more challenging MacKenzie phrases.

4 APPROACH

Armed with our Twitter phrase set, we set out to investigate
interface interventions aimed at helping users avoid or cor-
rect recognition errors. Throughout this paper, we focus on
input on a smartwatch since in past work small touchscreen
keyboards have resulted in relatively high error rates even
on easy Enron mobile phrases [26, 30]. This paper presents
the following progression of four experiments:

• Experiment 1 — We compare user and decoder per-
formance both with and without a feature allowing
users to lock in particular characters of their input.

• Experiment 2 — We explore how to use a small num-
ber of suggestion slots to enable low error rate and
high keystroke savings. We do this in computational
experiments on thousands of sentences typed on small
virtual touchscreen keyboards.

• Experiment 3 — We use Experiments 1 and 2 to in-
form the design of our smartwatch virtual keyboard
VelociWatch. We compare three diferent options for
using tap and swipe actions to trigger interface actions.

• Experiment 4 — We improve VelociWatch based on
Experiment 3. We compare our keyboard design with
a simpler design with only a few correction options.

5 EXPERIMENT 1: LETTER LOCKING

The goal of this study was to investigate if users could antic-
ipate words likely to cause a recognition error and modulate
their behavior to avoid them. Further, we wanted to see
whether this additional user signal could help our decoder.

Keyboard design

We designed a virtual keyboard for the Android Sony Smart-
Watch 3. This watch has a screen area of 29 mm × 29 mm
with a resolution of 320 × 320 pixels. The watch has a 4-core
1.2 Ghz ARM CPU with 512 MB of memory. Recognition
occurs locally on the device.
The keyboard contains the letters A-Z plus apostrophe.

There is no spacebar key. As shown in Figure 2, the keyboard
occupies the lower portion of the screen and measures 29 mm
× 13 mm. The keys are shown using white text on a grey
background with no explicit visual key borders. This results
in an efective key size of 2.9 mm × 4.3 mm.

The text result area above the keyboard shows previously
recognized text as well as the nearest keys for the current un-
recognized input sequence (Figure 2a). Swiping right causes
the current tap sequence to be recognized (Figure 2b). During
recognition, the screen background turns green and no input
is accepted until recognition completes.
When a user’s fnger is in contact with the screen, the

keyboard displays the nearest key in a large font over the
text result area (Figure 2c). This allows the user to reposition
their fnger despite the visual occlusion caused by their fnger.
If a touch event lasts for 500 ms or longer, the letter popup
turns orange and the watch vibrates (Figure 2d). This signals
that whatever letter is under a user’s fnger when they lift
up will be locked and not subject to auto-correction.

Swiping left deletes the previous tap from the observation
sequence and deletes the nearest key label from the result
text area. Swiping up moves to the next task. Swipes had
to be 3 mm or longer to be recognized. Swipe direction was
determined by the angle between a swipe’s frst and last
point. Taps had to be within 3 mm of the top of the keyboard
area to register. Swipes could occur anywhere on the screen.
In this study users could not delete or otherwise correct

recognition results (e.g. via a backspace key or a word sugges-
tion bar). We chose to do this to understand the performance
of letter locking in isolation rather than how it might perform
in combination with other error correction features.

Decoder
Our decoder is based on the noisy tap decoder VelociTap
[30]. The original version of VelociTap inferred the most
probable sentence given a sequence of two-dimensional tap
locations. Here we use a modifed version that recognizes
input progressively, supporting input of a variable number of
words (as in [5, 26]). For further details about the decoder’s
operation, see [26, 30]. Here we highlight the changes made
to support letter locking and give details about the specifc
language models we used in this paper.
To support letter locking, each tap observation was aug-

mented with a feld indicating if a tap should be treated as

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 5

Figure 2: Example of writing “ready to meet nanook” in Experiment 1. (a) The keyboard has already recognized “ready to”.
The user tried to type “meet” but was somewhat inaccurate. (b) After swiping right, the nearest key text is replaced with the
correct recognition result. (c) If a fnger is down, the nearest key appears in a large font. (d) After a period of time, the letter
changes to orange to signal it has been locked and no longer subject to auto-correction. (e) After locking the remaining letters,
the user correctly obtains “nanook”.

certain. This feld was set by the virtual keyboard whenever
a touch event lasted over a threshold time. One or more taps
in a word could be locked. In the case of locked taps, we
allowed the keyboard model to only generate the key clos-
est to the touch up location. Other non-locked taps were
probabilistically decoded as normal. So for example, a user
might lock “n”, “a”, and “n” in “nanook” but quickly tap the
fnal three letters. In this case, the decoder might return re-
sults such as “nanook”, “nannie”, “nannied”, and “nancy”, but
would not be able to propose “rebook” or “cook”.

We prevented the decoder from deleting locked observa-
tions. This ensured all locked letters had to appear in the
recognition result. We also disallowed insertions between
consecutive locked letters. This prevents the decoder from
inserting guesses that might be probable under the language
model, but which may contradict a user’s intent. For example,
a user might lock the “p” and “c” in “snapchat” hoping to
get a single word. In this case we want to avoid the decoder
being allowed to insert a space between the locked letters.
We trained our language models as in [26]. Our word

model has 588 K n-grams and a gzipped ARPA text size of
5.5 MB. In Experiment 1, we used a character model with
766 K n-grams and a size of 6.3 MB. In Experiments 2 and 3,
we used a slightly bigger character model with 963 K n-grams
and a size of 9.0 MB. We found this bigger model improved
recognition accuracy on the input from Experiment 1.

Study Procedure

We recruited 16 participants via convenience sampling. Par-
ticipants completed an hour session and were paid $10. Partic-
ipants were aged 18–27 (mean 19.1). 10 participants identifed
as male, 2 female, and the rest did not answer. 15 participants
were right-handed. 10 participants had never used a smart-
watch, 3 used one occasionally, and 3 used one frequently.

In Experiment 1, participants entered memorable phrases
from our Twitter phrase set. Due to the small size of the
smartwatch screen, we further limited the Twitter phrases to
those with six or fewer words. We also removed phrases with

acronyms as we worried users might incorrectly assume the
lock feature was only for spelling out acronyms. In the end
we obtained 43 OOV phrases and 81 in-vocabulary phrases.

Experiment 1 was a within-subject experiment with two
counterbalanced conditions. In the NoLock condition, the
feature allowing letters to be locked was disabled. Partici-
pants could still touch and hold to receive visual feedback of
the key they were over, but the resulting touch up location
was probabilistically decoded. In the Lock condition, partic-
ipants could touch and hold to lock individual letters. We
instructed participants they could lock any number of letters
in a word, including all or none. The keyboard reminded
participants on each phrase that they could lock letters.
Participants wore the watch on their non-dominant arm

and rested their arm on a desk. At the start of each condi-
tion, participants practiced writing two OOV and two in-
vocabulary phrases. Practice tasks throughout this paper
were excluded from analysis. In each condition, participants
received six OOV phrases and six in-vocabulary phrases.
Participants saw a random subset of the phrase sets and
never saw the same phrase more than once. The OOV and
in-vocabulary phrases were mixed together at random.
Participants could spend as long as they wanted memo-

rizing a phrase. The phrase disappeared and could not be
referred to again once input began. After completing each
transcription task, the participant was shown the reference
text, the recognition text, their entry rate, and their error
rate. If the error rate was above 5%, it was shown in red and
the watch vibrated twice.

Results
Figure 3 displays the main results. Overall, participants used
the lock feature. 11.8% of taps in Lock were long taps last-
ing over 500 ms compared to only 0.4% of taps in NoLock.
This diference was statistically signifcant: dependent t-test,
t(15) = 8.41, r = 0.91, p < .001.

We measured the error rate using Character Error Rate
(CER). CER is the number of character insertions, deletions,

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 6

●

●

0

5

10

15

20

25

NoLock Lock

L
o

n
g

 t
a

p
s
 (

%
)

●

●

0

5

10

15

NoLock Lock

E
rr

o
r

ra
te

 (
C

E
R

 %
)

0

10

20

30

NoLock Lock

E
n

tr
y
 r

a
te

 (
w

p
m

)

Figure 3: Long tap percentage, error rate, and entry rate with
and without letter locking in Experiment 1.

and substitutions required to change the recognized text into
the reference text, divided by the characters in the reference.
Participants’ use of letter locking reduced their error rate:
6.2% CER in NoLock versus 3.3% in Lock. This diference
was signifcant: t(15) = −4.21, r = 0.74, p < .001.

We measured entry rate using words-per-minute (wpm)
with a word being fve characters including space. We calcu-
lated entry time from the frst tap on the keyboard screen
until the participant moved to the next phrase. As might
be expected, locking letters reduced input speed: 20.9 wpm
in Lock versus NoLock at 23.2 wpm. This diference was
signifcant: t(15) = −3.86, r = 0.71, p < .01. Recognition
time was negligible, 0.055 s in Lock and 0.063 s in NoLock.

Using left swipe to backspace tap events was infrequent in
both conditions, 0.087 backspaces per character in the fnal
text in NoLock and 0.081 in Lock. This diference was not
signifcant: t(15) = −0.53, r = 0.14, p = 0.604. This indicates
that despite often seeing visual feedback of incorrect nearest
key text, participants tended to trust the auto-correction.

For tasks in Lock where the words in the phrase matched
the number of recognition events, we determined which
words (if any) a participant locked. We also determined if
all the letters were locked or just a subset. Of the words
with any locked letters, 35% had all their letters locked. The
most frequent words that had all their letters locked were,
in decreasing order: bourre, brembo, auchinleck, haast, grig-
son, brofst, europe, delmon, evra, paak. The most frequent in
which any letter was locked were: brembo, auchinleck, grig-
son, knapsacking, bourre, paak, europe, deano, luton, delmon.
With the exception of europe and luton, all these words were
OOV. We conjecture participants mistakenly thought these
two words needed locking to force recognition in lowercase.
We further analyzed participants’ lock letter behavior

in the Lock condition. We measured the percentage of in-
vocabulary and out-of-vocabulary words where participants
locked some letters (i.e. one or more) in a word and words
where participants locked every single letter. Participants
locked some letters in 4.8% of in-vocabulary words while they
locked some letters in 75.6% of OOV words. This diference

was signifcant: t(15) = −9.79, r = 0.93, p < .001. Partici-
pants locked all the letters in 2.1% of in-vocabulary words
while they locked all the letters in 42.5% of OOV words. This
diference was signifcant: t(15) = −5.71, r = 0.83, p < .001.

To lock a letter, participants had to precisely target a key.
This alone could lead to a lower error rate. To measure if
our decoder changes to support locking actually improved
recognition accuracy, we ran ofine experiments on the data
from Lock. As in the user study, if the lock letter feature was
turned on, the decoder locked the specifc letters in a word
where a user’s tap exceeded the time threshold. If the lock
letter feature was turned of, the decoder treated locked taps
as normal probabilistic ones. We found turning the decoder
feature of increased the error rate from 3.3% to 5.5%. Thus
it was pinning portions of the observation sequence down
that helped improve recognition accuracy.
Thus it appears without any explicit instructions, users

could accurately predict which words might be problematic
for an auto-correcting virtual keyboard. This could stem from
previous exposure to auto-correction errors using virtual key-
boards on mobile devices. It could also be that participants
are singling out uncommon words based on their knowledge
of English. An interesting observation is that participants
often lock some but not all the letters in difcult words. We
will analyze this in more detail in our fnal study.

Open comments were in general supportive of the lock
feature such as “More efective with the ability to lock char-
acters” and “Lock in is a vital feature for strange words and
names.” However some noted locking felt slow or suggested
alternatives, e.g.: “I wish there was a way to lock a specifc
word after fnishing it rather than locking each letter” and “I
liked the lock feature. I just wish it was faster.” In Experiment
3, we address these issues by lowering the time threshold
and adding a way to select the literal text typed.

6 EXPERIMENT 2: SELECTION SLOT DESIGN

In this section, we conduct computational experiments to
help design our keyboard. We explore four slot options for
aiding users to avoid and correct recognition errors:

• Prefx slots — Word completions based on the cur-
rently noisy prefx input of a word. A user’s taps thus
far are treated probabilistically during the search for
likely word completions.

• Best slots — Recognition alternatives based on all the
pending taps. This is similar to a prefx slot other than
the decoder is told to assume the taps represent an
entire word and not necessarily a prefx.

• Likely slots — Whatever hypotheses have the high-
est probability regardless of whether they are prefx
completions or recognition alternatives.

• Literal slot — The letters nearest to each tap.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 7

Simulation and Test Data

We simulated a user who made optimal use of any available
selection slots to try and obtain a sentence’s reference text.
For purposes of these experiments, we assume no use of other
correction features such as backspacing and re-typing errors.
We assume prefx predictions are made before even the frst
letter of a word is typed. Predictions use the previous selected
words as context to the language model. If the simulated
user is unable to get the desired reference word during input,
we use the most likely hypothesis. This simulates leaving
such errors uncorrected, potentially negatively impacting
the language model’s performance on future words.
We measure performance using two metrics. The frst is

the character error rate of the fnal text. The second is the
potential keystroke savings. Keystroke savings (KS) is calcu-� �
lated as KS = 1 −

kp
× 100% where kp is the keystrokes ka

required with word predictions and ka is the keystrokes
required without predictions. Higher keystroke savings is
better. We assume slot selection requires one keystroke and
adds any following space.
We ran our simulation on 3,158 sentences of virtual key-

board data from the Small and Tiny keyboard conditions of
[30] (collected on a Nexus 4 phone) and all conditions of [26]
(collected on a Sony SmartWatch 3). Note that some of these
conditions involved users typing multiple words without
explicitly denoting the space between words. We converted
the data to word-at-a-time input by force-aligning the input
sequences with the reference transcript.

Results
We simulated all possible ways to set a given number of slots
to the prefx, best, likely, or literal options. The literal option
was either included or not. If a candidate design had N slots
of some type, we used the N most likely hypotheses of that
type. We never included the same word in multiple slots so
when flling a slot, we continued down the hypotheses for
that type ordered by probability until we found a new word.
Before a word’s frst tap, there are no best or literal options.
In this case, we flled all slots with prefx completions.

Figure 4 shows the performance envelope of diferent slot
designs. As expected, using more slots provides improved
performance, but gains are marginal past fve slots. The
points in the lower left of Figure 4 represent designs where
most or all slots are best slots. This resulted in poor key-
stroke savings but provided the lowest error rates for a given
number of slots. Note that some keystroke savings was still
possible due to prefx completions at the start of words.
For a given number of slots, the point with highest key-

stroke savings used most or all slots for prefx completions.
The use of a literal slot in most cases resulted in worse perfor-
mance in terms of error rate and keystroke savings. This is

Error rate (CER %)

K
e
y
s
tr

o
k
e

 s
a
v
in

g
s
 (

%
)

3 4 5 6 7

0
1

0
2
0

3
0

4
0

●●

●●

●●

●

●●

●●

●

●●

●●

●

2 slots

3 slots

4 slots

5 slots

6 slots

Figure 4: Performance of 2–6 slot virtual keyboard designs.

Number of slots Keystroke
Likely Prefx Best Literal savings CER

0 0 2 0 8.4% 3.7%
0 0 1 1 8.1% 4.1%
0 1 0 1 27.6% 6.8%
1 0 0 1 27.6% 6.8%
0 0 4 1 12.9% 3.3%
2 2 1 0 40.2% 3.5%
3 0 1 1 38.5% 3.6%
1 4 0 0 41.4% 3.8%

Table 3: A selection of 2 and 5 slot designs. We selected the
confguration in bold for our smartwatch keyboard.

likely due to our test data consisting largely of Enron mobile
phrases that had almost no OOV words.

Table 3 shows a selection of operating points for two and
fve slots keyboards (a complete list appears in our supple-
mentary material). For our keyboard, we decided on fve slots
as it provided the majority of potential gains. Also a fve slot
design allowed inclusion of a literal slot with only a small
performance penalty. This was important as we wanted to
compare a literal slot against our lock letter method. Further,
fve slots allowed a visual layout in which a central option
was surrounded by four other options. Out of the fve slot
designs, we decided on using a literal slot, three likely slots,
and one best slot.
In Experiment 4, we will compare against a simpler two

slot keyboard. With only two slots, using a literal slot re-
quires choosing to either optimize keystroke savings or error
rate. Using a likely or prefx slot with a literal slot provided
nearly identical performance. For the two slot keyboard, we
decided on using a likely slot as it allows word completions
early in entry that hopefully converge to the best hypothesis
as the entire word is typed. This choice of slots is similar to
the WatchWriter [8] smartwatch keyboard which also used
one literal and one likely slot.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 8

7 EXPERIMENT 3: VELOCIWATCH

Based on Experiments 1 and 2, we designed a predictive vir-
tual keyboard named VelociWatch. VelociWatch provides
fve text suggestions as well as a backspace action. In Experi-
ment 3, we compare using swipes versus taps to select these
options. We conjectured given the limited interaction size of
a smartwatch, swipe selection would be more accurate.

Keyboard Design

We placed prediction slots in the four corners above and
below the text area (Figure 1 left). This allowed an easy
mapping between the visual location of the slots and swipe
selection actions. Swiping diagonally up and left anywhere
on the screen selected the top-left suggestion, swiping up
and right selected the top-right, and so on. This led us to
put the backspace key on the left side to correspond to left
swiping to erase the last letter. The top-left slot was used
for the literal slot. Similar to many commercial keyboards,
we placed the literal text in double quotes. The most likely
prediction was in the upper-right, the second most likely in
the bottom-left, and the third most likely in the bottom-right.
We displayed the best recognition result in highlighted

text in the text area. We worried placing a spacebar at the
bottom of the keyboard would cause accuracy problems due
to size limits and its proximity to the sensor edge and other
letters. Spaces are common so having a sure way to type
them is important, especially when other taps are treated
probabilistically. We decided on a novel design in which the
text area served as an implicit spacebar. This provided a large
target away from the screen edge. It also felt natural to tap
the highlighted best hypothesis in order to select it.

As in Experiment 1, dwelling in the keyboard area resulted
in a large preview of the letter. Based on feedback from
Experiment 1, we lowered the lock letter time threshold to
250 ms. The locked letters infuenced the decoder’s search
and thus slots only showed suggestions complying with any
locked letters. Before any input for a word, all four corner
slots were populated with likely words given the previous
text context. All slots updated every time the user typed a key.
Recognition was performed on a separate thread so typing
could proceed without waiting for recognition. Predictions
were populated on average 91 ms after a key press.

Each prediction slot was 14 mm × 3.3 mm. The backspace
button was 4.2 mm × 8.3 mm. The text area was 24 mm ×
8.3 mm and could display three lines of text. After selecting a
prediction, backspace, or the pending best text, the selected
element would fash green to show which action was taken.

For this experiment, we tuned the parameters of VelociTap
on 1,104 sentences of data collected on a Sony SmartWatch 3
in [26]. We used data from conditions in which participants
had tapped one or two words prior to a recognition request.

Study Procedure

We recruited 24 participants via convenience sampling. None
had participated in the previous study. Participants took part
in a one-hour session and were paid $10. 22 participants were
right-handed. Participants were aged 18–22 (mean 19.3). 15
participants identifed as male, 6 female, and the rest did not
answer. 13 participants had never used a smartwatch, 8 used
one occasionally, and 3 used one frequently. 18 participants
had not entered text on a smartwatch, 2 used speech recog-
nition, and 4 used tap gestures on a QWERTY keyboard.
This was a within-subject experiment with three coun-

terbalanced conditions. In the Tap condition, the best slot,
the backspace, and the four likely/literal slots all had to be
tapped. In the Swipe condition, the best slot was selected by
right swipe, the backspace was selected by left swipe, and
the four likely/literal slots were selected by diagonal swipes.
In the Hybrid condition, the best slot was selected by right
swipe, the backspace was selected by left swipe, and the four
likely/literal slots were tapped.

Participants were frst shown a short video demonstrating
all the features of VelociWatch. This video showed both the
swipe and tap actions for all features. At the start of each
condition, participants were told whether swipe or tap was
enabled for each feature. Participants wrote OOV and in-
vocabulary Twitter phrases as in Experiment 1 except they
wrote two practice phrases and 10 evaluation phrases. After
each condition, participants completed a questionnaire.

Results
Figure 5 shows the main results. Overall, participants wrote
at about the same speed in all three conditions: 17.7 wpm
in Tap, 17.8 wpm in Swipe, and 17.4 wpm in Hybrid. This
diference was not statistically signifcant: repeated measures
ANOVA, F2,46 = 0.26, p = 0.78. The entry rate across all
conditions for the in-vocabulary phrases was 21.3 wpm while
for OOV phrases it was 13.9 wpm. Thus it appears users
either slowed down their typing or had to perform corrective
actions for the more difcult words.
We measured the error rate of the fnal text of each task

after any user correction. Error rates were overall low: 3.2%
CER in Tap, 3.4% in Swipe, and 2.1% in Hybrid. This difer-
ence was not signifcant: F2,46 = 2.13, p = 0.13. The error rate
across all conditions for the in-vocabulary phrases was 2.0%
CER while for OOV phrases it was 3.7%. This could mean that
despite the error correction features, participants still could
not obtain the specifed text. Alternatively, harder phrases
may have been more difcult to remember for participants.

We anticipated the small slot targets would result in more
backspacing to correct errors resulting from errant selections.
This did not seem to be the case, backspaces per character
was similar in all conditions: 0.137 in Tap, 0.137 in Swipe,

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 9

and 0.151 in Hybrid. This diference was not signifcant:
F2,46 = 4.16, p = 0.66. There was an increase in backspacing
to 0.142 compared to 0.086 in Experiment 1 (averaged across
conditions). Thus it appears participants were backspacing
to some degree to correct erroneous slot selections.

Across all conditions, 3.3% of taps were over the lock letter
threshold of 250 ms. This is a marked decrease from the 12%
observed in the Lock condition of Experiment 1. This is
likely due to competing ways to obtain the correct text via
VelociWatch’s slots. The lock letter feature appeared popular
with some users but not others; half of users locked less than
1% of letters while the other half locked 1–14%.

Averaged over all conditions, we found participants se-
lected the best slot 68% of the time, one of the likely slots
22% of the time, and the literal slot 10% of the time. For
in-vocabulary phrases, the ratio of best, likely, and literal
slot usage was 71%, 26%, and 3% respectively. But for OOV
phrases, it was 65%, 19%, and 16%. While the literal slot was
not that advantageous in Experiment 2, on more difcult text
it became important for avoiding the auto-correct trap.
VelociWatch supports entering multiple words without

spaces. 95.9% of slot selections were a single word, while 4.2%
had multiple words. Just because the decoder inferred a multi-
word result does not mean that was a user’s intent; it could
be a recognition error. We found 1.5% of the selections were
a correct multi-word substring of the reference phrase. This
indicates the decoder may have inserted spaces too freely.
Further, only fve participants selected correct multi-word
results for more than 1% of their selections. These results
suggest most participants preferred word-at-a-time entry.

When a likely slot was selected, we tallied how many taps
a participant made prior to the selection: 0 taps 8.4%, 1 tap
6.5%, 2 taps 10.2%, 3 taps 14.6%, 4 taps 19.5%, 5 taps 11.6%, 6
taps 8.6%, 7 or more 20.6%. Thus occasionally making pre-
dictions before the start of the word was useful. Participants
commonly typed several letters prior to selection.
On a 7-point Likert scale where 7 is strongly agree, the

mean rating for the statement “I entered text quickly” was 5.2
in Tap, 5.4 in Swipe, and 5.6 in Hybrid. This diference was
not signifcant, Friedman’s test, χ 2(2) = 1.13, p = 0.57. The
mean rating for the statement “I entered text accurately” was
5.5 in Tap, 5.1 in Swipe, and 5.5 in Hybrid. This diference
was not signifcant, Friedman’s test, χ 2(2) = 1.19, p = 0.55.

In open comments, some participants preferred swiping
while other preferred tapping. A few participants commented
they swiped when they were suppose to tap or vice versa.
At the end of the study, participants specifed their preferred
method: 38% selected Swipe, 33% selected Hybrid, and 29%
selected Tap. We asked participants how they dealt with dif-
fcult text. 15 participants commented specifcally that they
used the letter lock feature. Less common themes included
checking the suggestions and using the literal text.

●

0

10

20

30

Tap Swipe Hybrid

E
n

tr
y
 r

a
te

 (
w

p
m

)

●

●

●

●

●

0

5

10

15

Tap Swipe Hybrid

E
rr

o
r

ra
te

 (
C

E
R

 %
)

0.0

0.1

0.2

0.3

Tap SwipeHybrid

B
a
c
k
s
p
a
c
e
s
 p

e
r

c
h
a
r

Figure 5: Entry rate, error rate, and backspaces per output
character in Experiment 3.

8 EXPERIMENT 4: TWO SLOT KEYBOARD
COMPARISON

In Experiment 3, there was no clear speed or accuracy ad-
vantage to swipe or tap selection. Given users were mixed
in their preference, we decided to enable both swipe and
tap functionality in Experiment 4. Further, we wanted to see
how users would perform selections if given both options.
In Experiment 3, we observed users frequently backspaced
entire words. We added a feature allowing users to delete an
entire word by long tapping on backspace. This resulted in a
keyboard with a range of error correction features. In this
section, we compare VelociWatch with a simpler keyboard
that ofers only a limited set of features.

Simpler Keyboard Design

The simpler keyboard has three options: the most likely
word hypothesis on the left, the literal text in the middle,
and a backspace button on the right (Figure 1 right). The
most likely hypothesis could be either a prefx completion
or a recognition alternative. We search for both types of
hypotheses and use the one with highest probability. The
backspace button deletes all pending letters for the current
word. If there are no pending letters, it deletes the previous
word. Note this design has no way to delete an individual
character. Thus the keyboard could propose an incorrect
prefx completion based on a user’s completed noisy input
of a word. In this case, the user’s only recourse would be to
start the word over.

We reduced the available input options and reduced visual
clutter in a number of ways. We did not allow multi-word
input. We also did not populate the slots until the frst letter
was typed. We turned of the lock letter feature and the key
preview. The keyboard area was the same as VelociWatch.
Prediction slots were 11.4 mm × 3.3 mm. The backspace key
was 5.5 mm × 3.3 mm. We displayed up to three lines of text.
Our design closely resembles the WatchWriter [8] interface
except our keyboard was designed for a rectangular form
factor and did not implement gesture-keyboard input.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 10

●

●

VelociWatch TwoSlot

0

10

20

30

All IV OOV All IV OOV
Phrases

E
n

tr
y
 r

a
te

 (
w

p
m

)

●

●

VelociWatch TwoSlot

0

5

10

15

All IV OOV All IV OOV
Phrases

E
rr

o
r

ra
te

 (
C

E
R

 %
)

Figure 6: Entry and error rates in Experiment 4. Results over
all phrases and the in-vocabulary (IV) and OOV phrases.

Study Procedure

We recruited 14 participants via convenience sampling. None
had participated in previous studies. Participants took part in
a one-hour session and were paid $10. 13 participants were
right-handed. Participants were aged 18–22 (mean 19.2). 10
participants identifed as male, 3 female, and 1 did not an-
swer. 6 participants had never used a smartwatch, 7 used one
occasionally, and 1 used one frequently. 10 participants had
not entered text on a smartwatch, 2 used speech recognition,
and 1 used tap and swipe gestures on a QWERTY keyboard.
This was a within-subject experiment with two counter-

balanced conditions: In the VelociWatch condition, par-
ticipants used the VelociWatch keyboard. In the TwoSlot
condition, participants used the two slot keyboard.
At the start of the study, participants watched a video

demonstrating the keyboard assigned to their frst condition.
They then wrote four practice phrases using that keyboard.
We then showed a video demonstrating the other keyboard
and they wrote four practice phrases with that keyboard. Par-
ticipants then wrote 10 OOV and 10 in-vocabulary phrases
in each condition using a procedure similar to Experiment 3.
After each condition, they completed a questionnaire.

Results
Figure 6 and Table 4 show our main results. Much to our
surprise, participants wrote faster in TwoSlot at 20.6 wpm
versus VelociWatch at 17.3 wpm. This diference was statis-
tically signifcant: t(13) = 3.78, r = 0.72, p < 0.01. Averaged
across conditions, entry rate was substantially faster for in-
vocabulary phrases at 22.3 wpm versus 15.5 wpm for OOV
phrases. VelociWatch was slower than TwoSlot for both
in-vocabulary and OOV phrases. We conjecture overheads
associated with monitoring the additional slots or locking
letters contributed to the slower entry rates in VelociWatch.
Error rate was similar in both conditions with a CER of

3.0%. This diference was not signifcant: t(13) = −0.11,

Condition Entry rate (wpm) Error rate (CER)
All IV OOV All IV OOV

VelociWatch 17.3 20.6 14.0 3.0% 1.9% 4.2%
TwoSlot 20.6 24.1 17.1 3.0% 1.5% 4.4%
average 18.9 22.3 15.5 3.0% 1.7% 4.3%

Table 4: Entry and error rates in Experiment 4. Results over
all phrases and the in-vocabulary (IV) and OOV phrases.

Some letters locked All letters locked
Input Reference Input Reference
knovKAERT knockaert OZZY ozzy
breXit brexit HAAST haast
xgOPT chopt BROFIST brofst
wEEzer weezer SEVCO sevco
DESIIgner desiigner AUCKENLECH auckenlech

Table 5: Example words where users locked some or all of
the letters. Locked letters are shown in uppercase. Lower-
case letters show the letter nearest to each non-locked tap.

r = 0.03, p = 0.91. Averaged across conditions, CER was sub-
stantially higher for OOV phrases at 4.3% versus 1.7% for in-
vocabulary phrases. VelociWatch and TwoSlot had similar
error rates for the in-vocabulary and OOV phrases. It is sur-
prising that despite TwoSlot having only a coarse-grained
word deletion feature, participants achieved acceptable error
rates on challenging text.

Both interfaces supported deleting all pending input or a
previous word. This feature was used frequently at 1.4 times
per phrase in TwoSlot, but was only used 0.03 times per
phrase in VelociWatch. It seems participants either pre-
ferred to backspace one letter-at-a-time, or did not learn this
feature. Only VelociWatch allowed backspacing of indi-
vidual letters. Participants used 0.12 backspaces per output
character, similar to what we observed in Experiment 3.
In VelociWatch, participants used long taps to lock let-

ters 3.0% of the time, similar to Experiment 3. We analyzed
all the individual recognition events that had one or more
taps in VelociWatch. 4.8% of words had at least one letter
locked. 1.5% of words had all their letters locked. Table 5
shows some samples of each case.

Participants selected the best slot 46.4% of the time, one of
the likely slots 38.4% of the time, and the literal slot 15.2% of
the time. In TwoSlot, participants used the likely slot 61.9%
of the time and the literal slot 38.1% of the time. It seems
without other correction features, participants in TwoSlot
often relied on careful typing and using the literal slot.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 11

In VelociWatch, 60.3% of selections used tap while 39.7%
used swipe. For tap selections, 37.8% were for a likely or lit-
eral slot, 27.7% for the best slot, and 34.5% for backspace (char-
acter or word). For swipe selections, 10.0% were for a likely
or literal slot, 6.2% for space, and 83.7% for backspace. Thus
when allowed to either tap or swipe, participants tended to
use tap, but swipe use was still frequent especially for eras-
ing previous characters. This suggests a virtual keyboard
designer may want to consider adding swipe actions for
some operations.

In VelociWatch, 91.9% of selections had one word while
8.1% had multiple words. The majority of multi-word recog-
nitions matched the reference, 5.7% of total selections. This
increase from Experiment 3 was driven by three participants
who used multi-word input for 10%, 22%, and 40% of inputs.

On a 7-point Likert scale where 7 is strongly agree, the
mean rating for the statement “I entered text quickly” was 5.1
in VelociWatch and 5.4 in TwoSlot. This diference was
not signifcant, Friedman’s test, χ 2(1) = 0.82, p = 0.37. The
mean rating for the statement “I entered text accurately” was
4.8 in VelociWatch and 4.6 in TwoSlot. This diference
was not signifcant, Friedman’s test, χ 2(1) = 0.00, p = 1.00.

Eight participants preferred VelociWatch while six pre-
ferred TwoSlot. Participants preferring VelociWatch cited
reasons such as lock letter, swipe, more suggestions, and
character backspace. Participants preferring TwoSlot said it
was simpler, had fewer options to scan, and resembled famil-
iar keyboards. Common strategies mentioned for entering
difcult words included typing slowly and locking letters.

9 DISCUSSION AND LIMITATIONS

Our most interesting fnding was that the simple two slot
keyboard out-performed our more feature-rich keyboard that
we painstakingly designed via computational and user exper-
iments. It did this for the input of difcult text in which half
the phrases involved OOV words. This is quite remarkable
since these OOV words were unlikely to be correctly pre-
dicted by the decoder. This left the user with only one choice:
tap every letter of a word correctly with zero mistakes on a
smartwatch. Due to the keyboard only having a word-level
backspace, any errant tap required starting the entire word
over. On just the OOV phrases, participants achieved an
acceptable error level of 4.4% while still typing at 17.1 wpm.
When asked how they handled difcult words, 8 of the

14 participants mentioned they slowed down. This is cor-
roborated by an analysis of the logs fles. When entering
in-vocabulary words using TwoSlot, participants wrote
at 23.0 wpm. When entering OOV words, they slowed to
14.5 wpm. For OOV words, participants used the literal slot
84.7% of the time. For in-vocabulary words, they only used
the literal slot 33.2% of the time. It appears participants could
often enter OOV words simply by carefully tapping each

letter and selecting the literal slot. It appears that even on
a small virtual keyboard, users were able to exactly target
all the letters of many words without the help of an auto-
correct algorithm. This suggests precise target acquisition
on capacitive touchscreens may not be that big of a problem.
As shown in Table 4, entry rates slowed substantially

for phrases with an OOV word. Supporting faster entry for
OOVs is challenging since users often slow down to be more
accurate, a motor control reality. Reducing overheads as-
sociated with letter locking could speed entry, e.g. using a
lower time threshold or using an input signal that is not time
dependent such as force. Avoiding OOVs in the frst place
by expanding the vocabulary could also be advantageous.
However, this requires care as we only want to add words
that are new proper names or slang while avoiding adding
words that are simply typos. Adapting the language model
could also help here, allowing more approximate input of
OOVs once a user has typed an OOV several times.

Our participants consisted of university-age students with
substantial touchscreen typing experience. The mean rat-
ing for the statement “I frequently enter text on a mobile
phone” was 6.7 (where 7=strongly agree). Despite half our
participants having never used a smartwatch, they seemed
to quickly learn to accurately target keys on its small touch-
screen. Participants also seemed quite capable of anticipating
auto-correction problems. This is likely a result of substantial
frst-hand experience. It remains to be seen if such precise
typing or error awareness holds for a broader population or
in more challenging scenarios (e.g. typing while walking).
Our studies all consisted of a single one-hour session. It

is possible VelociWatch would become faster with practice.
However, it is also possible inherent cognitive overheads
related to monitoring more suggestion slots or deciding be-
tween corrective options slowed performance. While our
design ofered a theoretical keystroke savings of 39%, this as-
sumes users always notice correct predictions. These aspects
were not modeled as part of the computational-driven design
of our interface. It would be interesting, but challenging, to
incorporate such aspects into the simulations.

In Experiment 4 using VelociWatch, users locked only 3%
of taps and the delete word feature was rarely used (0.03 times
per phrase). Users preferred to delete characters instead. The
simpler keyboard could delete only entire words. It could be
that by forcing users to correct by deleting an entire word and
retyping actually was faster in comparison to backspacing
character-by-character. This suggests the delete word feature
may need to be more prominent and faster to trigger.
We designed our keyboard for entering challenging text

on a small touchscreen. Our choices may not be optimal for
larger devices or for the input of more predictable text. There
is scope for designs between our two keyboard interfaces.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 12

Participants indicated they would have liked some of Ve-
lociWatch’s features in the simpler two slot keyboard. This
included backspacing individual letters, the option to swipe,
and the ability to lock letters. Adding a targeted set of such
features could result in a keyboard that performs better on
challenging text than either of the two designs we tested.

10 CONCLUSIONS

We presented a new phrase set of memorable Twitter mes-
sages that provides challenging text for evaluating text entry
interfaces. We investigated a new letter locking feature that
allows users to take control of the recognition process. In
our frst user study, we found that users had a good sense of
what words would be difcult for the auto-correct algorithm.
Letter locking provided improved recognition accuracy with
modest reductions in entry rate. We used data from thou-
sands of sentences typed on small virtual keyboards to ex-
plore what suggestions to ofer on a virtual keyboard. We
found using a literal slot, the best recognition hypothesis,
and three likely alternatives ofered the best potential of fast
and accurate input.
Combining our letter locking feature and our selection

slot fndings, we designed a smartwatch keyboard. We in-
vestigated using swipes rather than taps for selecting the
keyboard’s suggestions. We also tested using the text area
as a large implicit spacebar. In our second user study, partic-
ipants performed similarly using swiping or tapping. User
opinion was mixed with some preferring swiping and some
preferring tapping.
In our fnal user study, we compared our VelociWatch

keyboard against a simpler keyboard with only two sugges-
tion slots. Empirically, the simpler keyboard was faster at
20.6 wpm compared to our keyboard at 17.3 wpm. Both key-
boards achieved a low corrected error rate of 3.0%. We think
this is impressive performance given the challenging nature
of our phrases and the noisy input resulting from a small
touchscreen. Despite the somewhat slower entry rate, par-
ticipants perceived VelociWatch to be of similar speed and
accuracy. The majority subjectively preferred VelociWatch.
The performance of the simpler keyboard suggests accurate
typing for occasional difcult words may be possible even
without auto-correction.

11 ACKNOWLEDGMENTS

This work was supported by Google Faculty awards (K.V.
and P.O.K.), and EPSRC grants EP/N010558/1, EP/N014278/1,
EP/R004471/1 (P.O.K.). The supplementary material for this
paper contains participant data from Experiments 1–4, the
instructional videos shown in Experiments 3 and 4, and the
challenging Twitter phrase set.

REFERENCES
[1] Ahmed Sabbir Arif and Ali Mazalek. 2016. A Survey of Text Entry Tech-

niques for Smartwatches. In Proceedings, Part II, of the 18th International
Conference on Human-Computer Interaction. Interaction Platforms and
Techniques - Volume 9732. Springer-Verlag New York, Inc., New York,
NY, USA, 255–267. https://doi.org/10.1007/978-3-319-39516-6_24

[2] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2013. Pseudo-pressure
Detection and Its Use in Predictive Text Entry on Touchscreens. In Pro-
ceedings of the 25th Australian Computer-Human Interaction Conference:
Augmentation, Application, Innovation, Collaboration (OzCHI ’13). ACM,
New York, NY, USA, 383–392. https://doi.org/10.1145/2541016.2541024

[3] Xiang ‘Anthony’ Chen, Tovi Grossman, and George Fitzmaurice.
2014. Swipeboard: A Text Entry Technique for Ultra-small Inter-
faces That Supports Novice to Expert Transitions. In Proceedings
of the 27th Annual ACM Symposium on User Interface Software and
Technology (UIST ’14). ACM, New York, NY, USA, 615–620. https:
//doi.org/10.1145/2642918.2647354

[4] James Clawson, Kent Lyons, Alex Rudnick, Robert A. Iannucci, Jr., and
Thad Starner. 2008. Automatic Whiteout++: Correcting mini-QWERTY
Typing Errors Using Keypress Timing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’08). ACM,
New York, NY, USA, 573–582. https://doi.org/10.1145/1357054.1357147

[5] John J. Dudley, Keith Vertanen, and Per Ola Kristensson. 2018. Fast
and Precise Touch-Based Text Entry for Head-Mounted Augmented
Reality with Variable Occlusion. ACM Transactions on Computer-
Human Interaction (TOCHI) 25, 6, Article 30 (12 2018), 40 pages. https:
//doi.org/10.1145/3232163

[6] Jun Gong, Zheer Xu, Qifan Guo, Teddy Seyed, Xiang ‘Anthony’ Chen,
Xiaojun Bi, and Xing-Dong Yang. 2018. WrisText: One-handed Text En-
try on Smartwatch Using Wrist Gestures. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’18). ACM,
New York, NY, USA, 181:1–181:14. https://doi.org/10.1145/3173574.
3173755

[7] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker.
2002. Language Modeling for Soft Keyboards. In Eighteenth National
Conference on Artifcial Intelligence (AAAI ’02). American Association
for Artifcial Intelligence, Menlo Park, CA, USA, 419–424. http://dl.
acm.org/citation.cfm?id=777092.777159

[8] Mitchell Gordon, Tom Ouyang, and Shumin Zhai. 2016. WatchWriter:
Tap and Gesture Typing on a Smartwatch Miniature Keyboard with
Statistical Decoding. In Proceedings of the SIGCHI Conference on Human
factors in Computing Systems (CHI ’16). ACM, New York, NY, USA,
3817–3821. https://doi.org/10.1145/2858036.2858242

[9] Timo Götzelmann and Pere-Pau Vázquez. 2015. InclineType: An
Accelerometer-based Typing Approach for Smartwatches. In Proceed-
ings of the XVI International Conference on Human Computer Interac-
tion (Interacción ’15). ACM, New York, NY, USA, Article 59, 4 pages.
https://doi.org/10.1145/2829875.2829929

[10] Aakar Gupta and Ravin Balakrishnan. 2016. DualKey: Miniature Screen
Text Entry via Finger Identifcation. In Proceedings of the SIGCHI Con-
ference on Human factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 59–70. https://doi.org/10.1145/2858036.2858052

[11] Minako Hashimoto and Masatomo Togasi. 1995. A Virtual Oval Key-
board and a Vector Input Method for Pen-based Character Input. In
Conference Companion on Human Factors in Computing Systems (CHI
’95). ACM, New York, NY, USA, 254–255. https://doi.org/10.1145/
223355.223661

[12] Jonggi Hong, Seongkook Heo, Poika Isokoski, and Geehyuk Lee. 2015.
SplitBoard: A Simple Split Soft Keyboard for Wristwatch-sized Touch
Screens. In Proceedings of the SIGCHI Conference on Human factors in
Computing Systems (CHI ’15). ACM, New York, NY, USA, 1233–1236.
https://doi.org/10.1145/2702123.2702273

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 13

https://doi.org/10.1007/978-3-319-39516-6_24
https://doi.org/10.1145/2541016.2541024
https://doi.org/10.1145/2642918.2647354
https://doi.org/10.1145/2642918.2647354
https://doi.org/10.1145/1357054.1357147
https://doi.org/10.1145/3232163
https://doi.org/10.1145/3232163
https://doi.org/10.1145/3173574.3173755
https://doi.org/10.1145/3173574.3173755
http://dl.acm.org/citation.cfm?id=777092.777159
http://dl.acm.org/citation.cfm?id=777092.777159
https://doi.org/10.1145/2858036.2858242
https://doi.org/10.1145/2829875.2829929
https://doi.org/10.1145/2858036.2858052
https://doi.org/10.1145/223355.223661
https://doi.org/10.1145/223355.223661
https://doi.org/10.1145/2702123.2702273

[13] Clare-Marie Karat, Christine Halverson, Daniel Horn, and John Karat.
1999. Patterns of Entry and Correction in Large Vocabulary Continuous
Speech Recognition Systems. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’99). ACM, New York,
NY, USA, 568–575. https://doi.org/10.1145/302979.303160

[14] Per Ola Kristensson and Keith Vertanen. 2012. Performance Com-
parisons of Phrase Sets and Presentation Styles for Text Entry Eval-
uations. In Proceedings of the 2012 ACM International Conference on
Intelligent User Interfaces (IUI ’12). ACM, New York, NY, USA, 29–32.
https://doi.org/10.1145/2166966.2166972

[15] Per Ola Kristensson and Shumin Zhai. 2004. SHARK2: A Large Vo-
cabulary Shorthand Writing System for Pen-based Computers. In Pro-
ceedings of the 17th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’04). ACM, New York, NY, USA, 43–52.
https://doi.org/10.1145/1029632.1029640

[16] Per Ola Kristensson and Shumin Zhai. 2005. Relaxing Stylus Typing
Precision by Geometric Pattern Matching. In Proceedings of the 10th
International Conference on Intelligent User Interfaces (IUI ’05). ACM,
New York, NY, USA, 151–158. https://doi.org/10.1145/1040830.1040867

[17] Kazutaka Kurihara, Masataka Goto, Jun Ogata, and Takeo Igarashi.
2006. Speech Pen: Predictive Handwriting Based on Ambient Multi-
modal Recognition. In Proceedings of the SIGCHI Conference on Human
factors in Computing Systems (CHI ’06). ACM, New York, NY, USA,
851–860. https://doi.org/10.1145/1124772.1124897

[18] Luis A. Leiva and Germán Sanchis-Trilles. 2014. Representatively
Memorable: Sampling the Right Phrase Set to Get the Text Entry
Experiment Right. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). ACM, New York, NY, USA,
1709–1712. https://doi.org/10.1145/2556288.2557024

[19] I Scott MacKenzie and R William Soukoref. 2002. Text entry for
mobile computing: Models and methods, theory and practice. Human–
Computer Interaction 17, 2-3 (2002), 147–198. https://doi.org/10.1080/
07370024.2002.9667313

[20] I. Scott MacKenzie and R. William Soukoref. 2003. Phrase Sets for
Evaluating Text Entry Techniques. In Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’03). ACM, New York, NY, USA,
754–755. https://doi.org/10.1145/765891.765971

[21] I. Scott MacKenzie and Kumiko Tanaka-Ishii. 2007. Text Entry Systems:
Mobility, Accessibility, Universality. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[22] J. Ogata and M. Goto. 2005. Speech Repair: Quick Error Correction
Just by Using Selection Operation for Speech Input Interfaces. In Pro-
ceedings of the International Conference on Spoken Language Processing.
133–136.

[23] Stephen Oney, Chris Harrison, Amy Ogan, and Jason Wiese. 2013.
ZoomBoard: A Diminutive Qwerty Soft Keyboard Using Iterative
Zooming for Ultra-small Devices. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 2799–2802. https://doi.org/10.1145/2470654.2481387

[24] Germán Sanchis-Trilles and Luis A Leiva. 2014. A systematic com-
parison of 3 phrase sampling methods for text entry experiments in
10 languages. In Proceedings of the 16th International Conference on
Human-computer Interaction with Mobile Devices & Services (Mobile-
HCI ’14). ACM, New York, NY, USA, 537–542. https://doi.org/10.1145/
2628363.2634229

[25] Colton J. Turner, Barbara S. Chaparro, and Jibo He. 2017. Text
Input on a Smartwatch QWERTY Keyboard: Tap vs. Trace.

International Journal of Human-Computer Interaction 33, 2
(2017), 143–150. https://doi.org/10.1080/10447318.2016.1223265
arXiv:http://dx.doi.org/10.1080/10447318.2016.1223265

[26] Keith Vertanen, Crystal Fletcher, Dylan Gaines, Jacob Gould, and
Per Ola Kristensson. 2018. The Impact of Word, Multiple Word, and
Sentence Input on Virtual Keyboard Decoding Performance. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’18). ACM, New York, NY, USA, Article 626, 12 pages.
https://doi.org/10.1145/3173574.3174200

[27] Keith Vertanen and Per Ola Kristensson. 2009. Parakeet: A Con-
tinuous Speech Recognition System for Mobile Touch-screen De-
vices. In Proceedings of the 14th International Conference on Intelli-
gent User Interfaces (IUI ’09). ACM, New York, NY, USA, 237–246.
https://doi.org/10.1145/1502650.1502685

[28] Keith Vertanen and Per Ola Kristensson. 2011. A Versatile Dataset for
Text Entry Evaluations Based on Genuine Mobile Emails. In Proceedings
of the 13th International Conference on Human Computer Interaction
with Mobile Devices & Services (MobileHCI ’11). ACM, New York, NY,
USA, 295–298. https://doi.org/10.1145/2037373.2037418

[29] Keith Vertanen and Per Ola Kristensson. 2014. Complementing Text
Entry Evaluations with a Composition Task. ACM Transactions of
Computer Human Interaction 21, 2, Article 8 (February 2014), 33 pages.
https://doi.org/10.1145/2555691

[30] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and
Per Ola Kristensson. 2015. VelociTap: Investigating Fast Mobile Text
Entry Using Sentence-Based Decoding of Touchscreen Keyboard Input.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA, 659–668. https://doi.
org/10.1145/2702123.2702135

[31] Daryl Weir, Henning Pohl, Simon Rogers, Keith Vertanen, and Per Ola
Kristensson. 2014. Uncertain Text Entry on Mobile Devices. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’14). ACM, New York, NY, USA, 2307–2316. https:
//doi.org/10.1145/2556288.2557412

[32] Xin Yi, Chun Yu, Weinan Shi, Xiaojun Bi, and Yuanchun Shi. 2017.
Word Clarity As a Metric in Sampling Keyboard Test Sets. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’17). ACM, New York, NY, USA, 4216–4228. https:
//doi.org/10.1145/3025453.3025701

[33] Xin Yi, Chun Yu, Weinan Shi, and Yuanchun Shi. 2017. Is it too small?:
Investigating the performances and preferences of users when typing
on tiny QWERTY keyboards. International Journal of Human-Computer
Studies 106, Supplement C (2017), 44 – 62. https://doi.org/10.1016/j.
ijhcs.2017.05.001

[34] Shumin Zhai and Per-Ola Kristensson. 2003. Shorthand Writing on
Stylus Keyboard. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’03). ACM, New York, NY, USA,
97–104. https://doi.org/10.1145/642611.642630

[35] Shumin Zhai and Per Ola Kristensson. 2012. The word-gesture key-
board: reimagining keyboard interaction. Commun. ACM 55, 9 (2012),
91–101.

[36] Shumin Zhai and Per Ola Kristensson. 2012. The Word-gesture Key-
board: Reimagining Keyboard Interaction. Commun. ACM 55, 9 (Sep-
tember 2012), 91–101. https://doi.org/10.1145/2330667.2330689

[37] Shumin Zhai, Per-Ola Kristensson, and Barton A Smith. 2005. In
search of efective text input interfaces for of the desktop computing.
Interacting with computers 17, 3 (2005), 229–250. https://doi.org/10.
1016/j.intcom.2003.12.007

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 591 Page 14

https://doi.org/10.1145/302979.303160
https://doi.org/10.1145/2166966.2166972
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/1040830.1040867
https://doi.org/10.1145/1124772.1124897
https://doi.org/10.1145/2556288.2557024
https://doi.org/10.1080/07370024.2002.9667313
https://doi.org/10.1080/07370024.2002.9667313
https://doi.org/10.1145/765891.765971
https://doi.org/10.1145/2470654.2481387
https://doi.org/10.1145/2628363.2634229
https://doi.org/10.1145/2628363.2634229
https://doi.org/10.1080/10447318.2016.1223265
http://arxiv.org/abs/http://dx.doi.org/10.1080/10447318.2016.1223265
https://doi.org/10.1145/3173574.3174200
https://doi.org/10.1145/1502650.1502685
https://doi.org/10.1145/2037373.2037418
https://doi.org/10.1145/2555691
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2556288.2557412
https://doi.org/10.1145/2556288.2557412
https://doi.org/10.1145/3025453.3025701
https://doi.org/10.1145/3025453.3025701
https://doi.org/10.1016/j.ijhcs.2017.05.001
https://doi.org/10.1016/j.ijhcs.2017.05.001
https://doi.org/10.1145/642611.642630
https://doi.org/10.1145/2330667.2330689
https://doi.org/10.1016/j.intcom.2003.12.007
https://doi.org/10.1016/j.intcom.2003.12.007

	Abstract
	1 Introduction
	Challenging Text Input
	Error Avoidance via Letter Locking
	Error Avoidance and Correction via Selection Slots
	Tap versus Swipe Selection
	Simple versus Complex Design
	Contributions

	2 Related work
	3 Challenging Phrase Set
	4 Approach
	5 Experiment 1: Letter Locking
	Keyboard design
	Decoder
	Study Procedure
	Results

	6 Experiment 2: Selection Slot Design
	Simulation and Test Data
	Results

	7 Experiment 3: VelociWatch
	Keyboard Design
	Study Procedure
	Results

	8 Experiment 4: Two Slot Keyboard Comparison
	Simpler Keyboard Design
	Study Procedure
	Results

	9 Discussion and Limitations
	10 Conclusions
	11 Acknowledgments
	References

