
Speech Dasher: Fast Writing using Speech and Gaze

Keith Vertanen and David J.C. MacKay
Cavendish Laboratory, University of Cambridge
JJ Thomson Avenue, Cambridge, CB3 0HE, UK

kv227@cam.ac.uk, mackay@mrao.cam.ac.uk

ABSTRACT
Speech Dasher allows writing using a combination of speech
and a zooming interface. Users first speak what they want to
write and then they navigate through the space of recognition
hypotheses to correct any errors. Speech Dasher’s model
combines information from a speech recognizer, from the
user, and from a letter-based language model. This allows
fast writing of anything predicted by the recognizer while
also providing seamless fallback to letter-by-letter spelling
for words not in the recognizer’s predictions. In a formative
user study, expert users wrote at 40 (corrected) words per
minute. They did this despite a recognition word error rate
of 22%. Furthermore, they did this using only speech and
the direction of their gaze (obtained via an eye tracker).

Author Keywords
speech recognition, eye tracking, multimodal interfaces

ACM Classification Keywords
H.5.2 User Interfaces: Voice I/O

General Terms
Experimentation, Human Factors, Performance

INTRODUCTION
Speech offers a potentially very fast way to enter text. Users
have been measured dictating to a computer at 102 (uncor-
rected) words per minute (wpm) [3]. But speech recognition
is not perfect and any recognition errors will need correc-
tion. Previous research has shown that correction time dom-
inates and significantly slows entry rates (e.g. 14 wpm [2]
and 17 wpm [3]). A common strategy is to use a non-speech
modality for correction such as a keyboard, mouse or stylus
[4, 5]. But such modalities may not be an option for people
with limited or non-existent use of their hands.

We investigate Speech Dasher, an interface for correcting
speech recognition errors by zooming through the many hy-
potheses proposed by the recognizer. Even if the recognizer
completely misses a word, a simple letter-by-letter spelling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2010, April 1015, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04...$10.00.

Figure 1. Using original Dasher to write “the” followed by a space. The
arrows show the navigation direction needed to write the next symbol.

process allows easy error correction. We focus on a design
optimized for use with an eye tracker. We test our design in
a preliminary user study investigating how fast expert users
can write. To our knowledge, this is the first exploration of
text entry using a combination of speech and gaze direction.

INTERFACE DESCRIPTION

Original Dasher
Speech Dasher builds on the text entry interface Dasher [6].
In Dasher, users write by zooming through a world of nested
letter boxes (figure 1). The size of a box is proportional to
that letter’s probability under a language model (LM). As
more letters are written, Dasher makes stronger predictions
that allow common words to be written quickly. All letters
appear in each box in alphabetical order. This allows any-
thing to be written – even if the text is not well predicted.

Dasher can be controlled by any type of pointing device. By
pointing to the right of the screen midpoint, the user zooms
in on letters. The zooming speed is controlled by how close
the pointer is to the right side. As a box passes through the
midpoint, that box’s letter is written. If a mistake is made,
pointing to the left reverses zooming and allows text to be
erased. The maximum zooming speed is a user chosen pa-
rameter. After an hour of practice, users can write at 20 wpm
with a mouse [6] or 16–26 wpm using an eye tracker [7].

Figure 2. Writing “the cat sat on a mat” in Speech Dasher.

Speech Dasher
We augmented Dasher by adding information from a speech
recognizer. In Speech Dasher, users navigate as in original
Dasher, but can quickly zoom through entire words. We call
the most likely word hypotheses the primary predictions. If
the primary predictions are incorrect, secondary predictions
are obtained by going to an “escape” box (a red box with an
asterisk). Anything can be written in an escape box using
letter-by-letter predictive spelling. The escape boxes utilize
both a letter-based LM and the less probable speech results.

Usage Example
Here is a usage example. First, the user turns on the micro-
phone, says “the cat sat on a mat”, then turns off the micro-
phone. After recognition completes, the display is updated
to show not only the best hypothesis “murdoch kept sat on
a map to”, but also other likely hypotheses (figure 2, step
1). Navigation now begins in the display with the primary
predictions being “murdoch”, “tapped” and “the”. The user
zooms in on the box for “the” (steps 1–2). At this point,
the user wants to write “cat” but all the primary predictions
are incorrect. By zooming into the red escape box, “cat” is
spelled letter-by-letter (steps 3–4). The user now writes “sat
on a mat” using words in the primary predictions (steps 5–6).

Interface Elements
The Speech Dasher experimental interface is shown in fig-
ure 3. A large rectangular dwell button is located in the
lower-left corner. The button changes its label depending
on the user’s current state. The button is “clicked” if 85% of

Figure 3. The Speech Dasher interface during error correction.

brown

the

<s> </s>foxa

quick brawn
1.00.9

1.0

0.4

0.6

0.1

1.0

1.0 1.0

0.01 0.004
0.01

0.01

0.01

0.006

0.004

0.006

Figure 4. Lattice after new edges were added to cover all one-word
insertion errors. The new edges are shown as dashed red lines.

gaze locations in a one second period are inside the button.
As the user dwells on the button, its color changes from gray
to red. When clicked, the dwell button flashes, beeps, and is
deactivated until the user looks away from the button.

In the center of the interface is a circular slow-down region.
This region allows users to temporarily stop navigation in or-
der to rest, read text, or move to the dwell button. When the
user looks inside the circle, speed is progressively slowed.
The circle becomes more red as the speed is dampened. Af-
ter 1.25 seconds, navigation is stopped. Looking outside the
region causes navigation speed to progressively increase.

The top text box shows what the user is being asked to write.
The lower-right text box initially shows the best recognition
result. If this result is correct, the DONE button can accept
the result. Otherwise navigation is started and the text is
replaced with the user’s writing. When using gaze, checking
the result text can disrupt Dasher navigation. To address this,
we played every word written using text-to-speech (TTS).

HOW IT WORKS

Recognition and Utilization of Lattice
For speech recognition, we use PocketSphinx [1]. Depend-
ing on the user, we use a US or a UK English acoustic model.
We use a word trigram LM trained on newswire text. Af-
ter a user speaks a sentence, the recognition lattice is ob-
tained from PocketSphinx. The lattice is a directed acyclic
graph containing the various hypotheses explored during the
recognition. We prune the lattice to remove unlikely hy-
potheses. Next, the acoustic and LM likelihoods on the lat-
tice edges are converted to posterior probabilities. Finally,
edges are added to skip over words (figure 4). These skip
edges add extra hypotheses covering all one-word insertion
errors. The penalty of each added edge was set to a constant
αins multiplied by the penalties of the skipped edges.

Figure 5. The user has written “the quiet ”. A substitution at “quick”
allows the two red paths to reach “brawn” and “brown”. A substitution
at “quick” also allows the blue path to reach “fox” via the insertion edge
between “quick” and “fox”. A deletion after “the” allows the green
path to reach “quick”. Currently we would predict “b”, “f” and “q”.

Computing the Symbol Probabilities
Each box in Dasher requires a probability distribution over
all symbols in the alphabet (including a word boundary sym-
bol denoted by underscore). This is done by first finding the
set of lattice paths consistent with the symbol history. For
the moment, we will assume that at least one such path ex-
ists. So for example, given the lattice in figure 4, if the sym-
bol history is “the quick br”, there is one path to “brawn”
and one path to “brown”. Given these paths, the model pre-
dicts that the next symbol would be either “a” or “o”. A
letter’s probability is based on the total penalties incurred by
its corresponding lattice path.

Formally, let S be the symbol alphabet and s1, ..., st be the
t symbols written thus far. We denote a path by ρ and the
penalty value of a path by V (ρ). Let C(s1, ..., st+1) be the
collection of paths that are consistent with the symbol his-
tory s1, ..., st+1. The probability of the next symbol is:

P (st+1 | lat, s1, ..., st) =

∑
ρ∈C(s1,...,st+1)

V (ρ)∑
sx∈S

∑
ρ∈C(s1,...,st,sx) V (ρ)

.

Backoff and Pruning
A sequence of symbols may not be in the lattice. For exam-
ple, in figure 4 no paths exist for “the quie”. This results in
the model predicting zero probability for all symbols in the
alphabet. This prevents words not in the lattice from appear-
ing in the primary predictions. Such out-of-lattice words can
be written via the secondary predictions (described shortly).
For now, assume an out-of-lattice word has been written. Af-
ter completing the word, Speech Dasher tries to get the user
back on track somewhere in the lattice. This is done by as-
suming the recognizer has made a deletion or substitution
error somewhere in the lattice. A new search is initiated
with paths allowed to make one error (see example in fig-
ure 5). During the new search, paths incur a penalty for us-
ing an error (αdel for a deletion error, αsub for an substitution
error). Using the paths allowed to make an error, the proba-
bility distribution over symbols is calculated. If no paths are
found using one error, two errors are used, and so on.

We found in early prototypes that showing too many choices
made navigation difficult because all but the most probable
choices were small in the Dasher display. We changed our
design so only the most likely hypotheses appear in the pri-
mary predictions. This is done by setting symbols with a
probability less than αmin to zero and then renormalizing the
probabilities. This pruning causes the primary predictions to
be highly peaked at only the most probable word hypotheses.

Secondary Predictions
Some words may be missing from the lattice or may have
been too improbable to appear in the primary predictions.
These words can be written in an escape box that appears
only at word boundaries. The escape box interpolates be-
tween four models:
• Lattice paths – A search for paths is conducted but with

no minimum probability threshold. Additionally, highly
probable paths outside the escape box are excluded.
• Uniform lattice paths – A search for paths is done, but

the penalty of each path is set uniformly. This allows low
scoring paths to still have appreciable probability.
• Language model – A letter-based LM predicts the next

symbol based on the previous symbol history.
• Shortened language model – A letter-based LM predicts

the next symbol based on a previous symbol history that
is truncated at the first word boundary symbol.

We interpolated evenly between the models. We found this
provided a consistent user experience inside the escape box
while still allowing utilization of less probable lattice paths.

FORMATIVE USER STUDY
Our user study had three goals. First, to test and refine our
interface for use with gaze. Second, to investigate Speech
Dasher performance for users experiencing different levels
of recognition accuracy. Third, to get an estimate of expert
performance using both Dasher and Speech Dasher.

Participants and Setup
We conducted a longitudinal study with three users. We
chose users we anticipated would have different levels of
recognition accuracy due to their accent. Participant US1
was American, UK1 was British, and DE1 was German.
Note that UK1 (the second author) had significant experi-
ence both with eye tracking and with original Dasher. We in-
clude UK1 to show the potential performance for users who
are very experienced with Dasher navigation.

Users completed 6–8 training sessions followed by 3 test
sessions. The training sessions served to get users to ex-
pert performance. It also allowed us to find optimal settings
for the eye tracker and to tweak the size and position of in-
terface elements. After the training sessions, all aspects of
the interface were fixed. Training and test sessions followed
the same procedure. First, users wrote for 15 minutes using
Dasher or Speech Dasher. After a break, they wrote for 15
minutes in the other condition. The order of conditions was
swapped between sessions. We calibrated the Tobii P10 eye
tracker at the start of each session. We used the parameter
values: αins = 0.01, αsub = 0.08, αdel = 0.01, αmin = 0.2.

Task and Method
Users wrote newswire sentences with 8–12 words. The sen-
tences were shown in the top text box and also played via
TTS. At any point, the sentence could be played again by
pressing the space bar. Users received sentences in random
order. Dasher’s maximum zooming speed was adjusted us-
ing a slider that users operated with a normal mouse. We
encouraged users to adjust the speed throughout the study.

Figure 6. Entry rate for each user in Dasher (left) and Speech Dasher
(right). The final test sessions are shown with a double symbol.

In Dasher, using a CORRECT button made the navigation
display appear. As the user wrote, letters were output in
the lower-right text box. Once the sentence was complete,
a DONE button moved to the next sentence.

In Speech Dasher, an utterance was recorded using a MIC
ON and a MIC OFF button. After a recognition delay (2.0 s
± 1.1 s), the interface beeped and the navigation display ap-
peared. The best recognition hypothesis was shown in the
lower-right text box. If the recognition was completely cor-
rect, a DONE button moved to the next sentence. Other-
wise, correction proceeded via navigation. After correction,
a DONE button moved to the next sentence.

Error Rate Results
Error rate was measured using the word error rate (WER).
WER is the word edit distance between the target sentence
and what the user wrote divided by the number of words. In
the test sessions, the initial recognition results had an error
rate of 22%. The WER varied significantly between users
with a WER of 7.8% for US1, 12.4% for UK1, and 46.7%
for DE1. In both conditions, we measured the error rate of
the user’s final text. Users left few errors uncorrected. The
final WER was 1.3% in Dasher and 1.8% in Speech Dasher.

Entry Rate Results
Entry rate was calculated in words per minute (wpm). In
Dasher, we used the time between the end of the dwell on
CORRECT and the start of the dwell on DONE. In Speech
Dasher, we used the time between the end of the dwell on
MIC ON and the start of the dwell on DONE. This time in-
cluded recording, recognition delays and correction time.

In the test sessions, the average entry rate was 20 wpm in
Dasher and 40 wpm in Speech Dasher. In Speech Dasher,
users showed a wide range of entry rates, presumably due to
their differing recognition error rates. US1 was the fastest at
54 wpm, UK1 was next at 42 wpm, and DE1 was at 23 wpm.
On sentences with at least one recognition error, users still
wrote at 30 wpm in Speech Dasher. Dasher entry rates im-
proved as the study progressed (figure 6). For US1 and UK1,
Speech Dasher was faster than Dasher. As expected, the
lower the WER, the faster the entry rate (figure 7).

Recognition WER (%)

E
n
tr

y
 r

a
te

 (
w

p
m

)

0 10 20 30 40 50 60 70 80 90 100

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

y = 50.2e
−−0.021x

 R
2
 = 0.67

US1
UK1
DE1
All

Figure 7. Users’ sentences by entry rate and recognition WER.

CONCLUSIONS
We described Speech Dasher, an interface allowing efficient
correction of speech recognition errors. We showed how
Speech Dasher combined information from the recognizer,
from the user, and from a letter-based language model to
create an easy-to-use and consistent correction experience.

While our user study was small and used able-bodied users,
our preliminary results indicate that speech and gaze may
be a promising text entry method for people who cannot use
other input modalities. After four hours of practice, users
were able to write at 40 wpm despite a recognition WER of
22%. Even on sentences that had a least one recognition er-
ror, users were still able to write at 30 wpm. Using Dasher
without speech, users were slower, writing at 20 wpm. This
shows that Speech Dasher successfully leveraged recogni-
tion information to greatly improve users’ writing efficiency.

ACKNOWLEDGMENTS
We thank Tobii Technology for use of the eye tracker. We
thank Per Ola Kristensson for helpful discussions.

REFERENCES
1. D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black,

M. Ravishankar, and A. I. Rudnicky. PocketSphinx: A
free, real-time continuous speech recognition system for
hand-held devices. In Proc. of ICASSP, 185–188, 2006.

2. C.-M. Karat, C. Halverson, D. Horn, and J. Karat.
Patterns of entry and correction in large vocabulary
continuous speech recognition systems. In Proc. of CHI,
568–575, 1999.

3. K. Larson and D. Mowatt. Speech error correction: The
story of the alternates list. International Journal of
Speech Technology, 183–194, 2003.

4. S. Oviatt. Taming recognition errors with a multimodal
interface. Comm. of the ACM, 43(9):45–51, 2000.

5. B. Suhm, B. Myers, and A. Waibel. Multimodal error
correction for speech user interfaces. ACM Transactions
on Computer-Human Interaction, 8(1):60–98, 2001.

6. D. J. Ward, A. F. Blackwell, and D. J. C. MacKay.
Dasher - a data entry interface using continuous gestures
and language models. In Proc. of UIST, 129–137, 2000.

7. D. J. Ward and D. J. C. MacKay. Fast hands-free writing
by gaze direction. Nature, 418(6900):838, 2002.

	Introduction
	Interface Description
	Original Dasher
	Speech Dasher
	Usage Example
	Interface Elements

	How it Works
	Recognition and Utilization of Lattice
	Computing the Symbol Probabilities
	Backoff and Pruning
	Secondary Predictions

	Formative User Study
	Participants and Setup
	Task and Method
	Error Rate Results
	Entry Rate Results

	Conclusions
	Acknowledgments
	REFERENCES

