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ABSTRACT
The rise of affordable head-mounted displays (HMDs) has
raised questions about how to best design user interfaces for
this technology. This paper focuses on the use of HMDs for
home and office applications that require substantial text input.
A physical keyboard is a familiar and effective text input de-
vice in normal desktop computing. But without additional cam-
era technology, an HMD occludes all visual feedback about a
user’s hand position over the keyboard. We describe a system
that assists HMD users in typing on a physical keyboard. Our
system has a virtual keyboard assistant that provides visual
feedback inside the HMD about a user’s actions on the physi-
cal keyboard. It also provides powerful automatic correction
of typing errors by extending a state-of-the-art touchscreen
decoder. In a study with 24 participants, we found our virtual
keyboard assistant enabled users to type more accurately on a
visually-occluded keyboard. We found users wearing an HMD
could type at over 40 words-per-minute while obtaining an
error rate of less than 5%.
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INTRODUCTION
In recent years, affordable head-mounted displays (HMDs)
have entered the consumer market for the first time. Thus far,
the main focus has been on entertainment applications such
as games. But as HMDs become more common, we believe
there will be a need to support productivity applications such
as email and messaging. These applications often require sub-
stantial text input. However, if users wish to type extensively
while wearing HMDs, we must overcome the challenges posed
by the fact that users cannot see the real world while wear-
ing many models of HMDs. We also note that, due to the
prevalence, familiarity, and efficiency of QWERTY mechani-
cal keyboards, many users may wish to continue using their
desktop keyboards while wearing an HMD.
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Figure 1. User typing on a keyboard while wearing an Oculus Rift HMD.

In prior work [7], we developed a system that facilitated the
use of a physical keyboard while wearing an HMD. In this
paper we extend our system to include an on-screen virtual
keyboard that provides live feedback of the user’s typing, as
well as modifications to the decoder to improve error correc-
tion. We show our solution significantly reduced participants’
typing error rates, suggesting that software-only solutions can
help overcome barriers to using physical input devices while
wearing an HMD.

Related Work
Relatively little work has implemented or compared text entry
systems for HMDs. Bowman et al. [1] compared several meth-
ods, including a one-handed chord keyboard, speech recogni-
tion using a human instead of software, and a virtual keyboard
controlled by a tablet and pen. They found that none of these
approaches produced high levels of performance or usability.

The augmented reality system ARKB displays a holographic
keyboard on a see-through HMD [3]. ARKB tracks a user’s
hand position to monitor when a user’s fingers touch the key-
board. A more recent example is the Microsoft HoloLens
keyboard in which a user’s head position controls a pointer
on a holographic keyboard with keys selected via a hand ges-
ture. Yi et al. [8] developed ATK, a system that uses 3D hand
tracking to enable mid-air typing. Users were able to type in
mid-air with high accuracy, but at slower rates than what is
typically achievable with a physical keyboard.

Another way to facilitate real-world interaction while wearing
an HMD is mixed reality. In mixed reality, portions of the real
world are superimposed over the virtual environment. McGill
et al. [4] found that users’ unassisted typing performance while
wearing HMDs was significantly reduced, whereas blending
real and virtual reality brought performance closer to baseline.
In a study by Budhiraja et al. [2], users took drinks from a cup
while interacting with a virtual environment. Users reported
they preferred mixed reality solutions compared to removing
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Figure 2. The virtual keyboard assistant as shown in the HMD.

the HMD to interact with the real world. However, such
mixed reality methods add substantial software and hardware
complexity, and poor imagery or self-occlusion can hamper
effective user feedback.

Recently we conducted a pilot study in which five users typed
normally, typed on a keyboard occluded by a cardboard cover,
and typed while wearing an HMD [7]. No visual feedback
was provided to users during typing. Autocorrection was per-
formed on a user’s sentence via the VelociTap decoder [6]. Ve-
lociTap takes a sequence of noisy touch locations and searches
for the most probable text. We modified VelociTap to oper-
ate on physical keyboard input. In our pilot study, users were
slower and less accurate when the keyboard was occluded. Fur-
ther, users performed worse when their vision was occluded
by an HMD compared to when it was occluded by a cover.
VelociTap corrected most typing errors in all conditions.

We build on our previous work, further optimizing VelociTap
for physical keyboard input. We address the lack of visual
feedback during typing by adding a virtual keyboard assistant.
Our on-screen virtual keyboard provides high-contrast visual
feedback about which keys are being pressed and can be made
arbitrarily large.

SYSTEM DESCRIPTION
The system consists of three components: a keyboard client,
a recognition server, and a display server. These components
communicate via TCP and can be run on a single computer
or across multiple computers. The keyboard client displays
the stimuli phrases, logs keyboard events, and sends those
events to both the recognition and display servers. The recog-
nition server infers the most likely sentence based on the noisy
keystroke data for a sentence. Once decoding completes, the
recognition server sends its result to the display server.

The display server renders the text and optionally the virtual
keyboard assistant. When the keyboard client detects a key-
press on the physical keyboard, it forwards it to the display
server which lights up the corresponding key on the virtual
keyboard. The glow gradually fades to black over half a sec-
ond. The gradual fading allows users to see not only the last
key hit, but other recently hit keys (see Figure 2). The virtual
keyboard has labels for the letters, apostrophe, and comma.
Other unlabeled key outlines (e.g. number keys, shift keys) are
also shown and these keys light up if pressed. The rest of the
scene is black. The display server outputs the text and virtual
keyboard to either a desktop monitor or to an HMD.

Decoder
In this work, we improve on the physical keyboard version of
the VelociTap decoder. We repeat details from [7] and [6] for
clarity. VelociTap searches for the most probable hypothesis
given a noisy sequence of input observations. On a touch-
screen, observations are the x- and y-locations of taps on the
screen. However, since this work uses a physical keyboard
with discrete keys, each keypress instead results in an obser-
vation at the center of the pressed key. The keyboard was
measured to identify the location of the center of each key.

During decoding, an observation can generate a key’s let-
ter based on the probability under a two-dimensional Gaus-
sian centered at the key. Two parameters adjust the x- and
y-variances of the Gaussians and all letters share the same x-
and y-variances. Although keypresses result in an observation,
some observations can be ignored depending on a configurable
deletion penalty—causing no output character to be generated.
Extra characters of output can also be generated without con-
suming an observation by paying an insertion penalty.

VelociTap uses both a character and a word language model.
A character probability is assessed after a letter is produced
(including space). A word probability is assessed on a space
or the end of a sentence. The character and word language
models are combined with the keyboard model probabilities
via two separate scale factors. If a word is not in the word
language model, an out-of-vocabulary penalty is assessed. We
used a 12-gram character model trained with Witten-Bell dis-
counting (2.2 GiB on disk) and a 4-gram word model trained
with modified Kneser-Ney smoothing (3.8 GiB on disk). Both
were trained on billions of words of Twitter, usenet, blog,
social media, and movie subtitle data. VelociTap uses beam
pruning to control the speed-accuracy tradeoff of its search.

We conjectured that transpositions are a common error type
on bimanual keyboard typing. We modified VelociTap to ex-
plicitly model transposition by allowing adjacent observations
to be swapped instead of requiring a multi-step process of
deleting a character, inserting a new one, deleting the next
character, and inserting another new one. Swapping observa-
tions incurred a new transposition penalty. All parameters of
VelociTap were optimized with respect to pilot data obtained
from [7] and from data recorded by the authors.

STUDY
We designed a study to test two hypotheses: 1) When users can-
not see the keyboard, the virtual keyboard with live feedback
improves typing performance, and 2) Users’ typing perfor-
mance would be worse while wearing an HMD than while the
keyboard was merely occluded. To test this second hypothe-
sis, we included non-HMD conditions in which we placed a
physical cover over the top of the keyboard.

Our study had two independent variables, whether the virtual
keyboard was shown, and whether visual feedback was via an
HMD or via a desktop monitor. This resulted in four within-
subject conditions. In two desktop display conditions, partici-
pants typed on a keyboard that was occluded by a cover either
with the virtual keyboard assistant (DESKTOPASSISTANT) or
without the assistant (DESKTOP). In two HMD conditions,
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Figure 3. Participants’ average entry rate (left), error rate before automatic correction (center), and error rate after automatic correction (right).

Condition Entry rate (wpm) Before correction error rate (CER) After correction error rate (CER)
DESKTOP 44.7 ± 18.6 [ 8.1, 75.8] 11.2 ± 11.0 [0.5, 40.9] 3.9 ± 3.7 [0.0, 13.1]
DESKTOPASSISTANT 44.7 ± 16.3 [13.4, 69.8] 8.3 ± 7.3 [0.8, 29.0] 2.6 ± 2.2 [0.0, 7.0]
HMD 41.2 ± 17.5 [11.2, 67.9] 11.8 ± 11.4 [1.6, 49.6] 4.0 ± 3.2 [0.3, 11.9]
HMDASSISTANT 43.7 ± 17.0 [20.2, 74.8] 8.4 ± 6.2 [1.1, 22.8] 2.6 ± 2.9 [0.0, 12.7]

Table 1. Participants’ average performance in each condition in the study. Results are formatted as: mean ± sd [min, max].

participants wore an HMD and typed with the virtual keyboard
assistant (HMDASSISTANT) or without the assistant (HMD).

We recruited 24 participants via convenience sampling (7 fe-
male, 19 touch typists, ages 19–28). Participants received
either course credit or $10. Participants were seated at a desk
in a quiet office and typed on a Dell SK-8115 keyboard. In
the covered conditions, visual feedback was on a 24 inch LCD
monitor (1920× 1080 resolution) positioned about two feet in
front of the participant. In the HMD conditions, participants
used an Oculus Rift DK2 HMD (resolution of 960 × 1080 per
eye). We trained participants how to adjust the HMD.

Participants first completed a practice session where they typed
20 phrases. The goal of the practice phase was to allow partic-
ipants to gain experience with the occluder that covered the
keyboard and their hands, to gain experience wearing and look-
ing through the HMD, and to become familiar with the virtual
keyboard assistant. After this practice session, participants
completed the conditions in counterbalanced order.

In all conditions, participants were shown 20 random mem-
orable phrases from the Enron mobile data set [5]. Phrases
contained only the letters A–Z and apostrophe. Participants
were told to memorize each phrase before starting to type. As
soon participants began typing, the phrase disappeared and
was replaced by the literal characters typed (Figure 2).

In this study we disabled the backspace key. While VelociTap
can handle backspaces either deterministically or probabilisti-
cally, we wanted users to type quickly and trust the decoder for
error correction. We were concerned that allowing backspace
might introduce variability between participants. For exam-
ple some users might carefully correct errors with backspace
while others rely on autocorrection. As we will show, our after
correction error rates of < 5% show even without backspacing,
users typed quickly with accuracy acceptable for many casual
text entry tasks, e.g. messaging in a game.

If the virtual keyboard was enabled, it was shown at the bottom
of the screen. Participants submitted a phrase for decoding by
performing a long keypress by holding down any key for at
least 300 ms. After each entry, participants were shown the

entry rate and error rate for their last entry. Participants moved
to the next phrase via another long keypress.

RESULTS
An unanticipated problem with our procedure was that some
participants prematurely typed a long keypress. We believe
this happened because many participants used the spacebar for
their long keypresses at the end of each phrase. Another long
press was required before the next phrase appeared. Therefore
some participants accidentally pressed the spacebar for too
long while typing a space between words while in the middle
of an entry. To prevent these mistakes from interfering with
our analysis, we removed 15 entries in which a participant was
missing three or more words at the end of a phrase. Also, due
to a logging bug, we had to drop another 38 entries. At most,
this bug occurred three times to any participant in any condi-
tion’s set of 20 phrases. Our analysis was on the remaining
1,867 entries from the original set of 1,920.

We tested for significance using a two-way repeated measures
ANOVA. The two independent variables were whether the
keyboard assistant was shown or not (denoted Feedback), and
whether visual feedback was provided on an HMD or on a
desktop monitor (denoted Display). Details of our statistical
analysis appear in Table 2.

Entry rate
Entry rate is reported in words-per-minute (wpm). A word
is defined as five characters including spaces. Entries were
timed from the first key press until the recognition result was
displayed to the user. This includes the time required for a
user to perform the long keypress, networking delays, and
recognition delays. In the study, network and recognition
delays averaged 0.35 s per phrase (sd 0.71).

Entry rates were similar across all conditions: DESKTOP
44.7 wpm, DESKTOPASSISTANT 44.7 wpm, HMD 41.2 wpm,
and HMDASSISTANT 43.7 wpm (Figure 3 and Table 1). Partic-
ipants’ slower entry rates using an HMD display were signifi-
cant (Table 2). The similar or faster entry rates in the presence
of the virtual keyboard assistant were not significant.
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Entry rate (wpm) Feedback F1,23 = 2.10 p = .16 η2 =1.5×10−3

Display F1,23 = 7.79 p < .05 η2 =4.4×10−3

Feedback x Display F1,23 = 3.61 p = .07 η2 =1.4×10−3

Before correction error rate (CER %) Feedback F1,23 = 7.21 p < .05 η2 = 2.9×10−2

Display F1,23 = 0.22 p = .64 η2 = 4.2×10−4

Feedback x Display F1,23 = 0.15 p = .70 η2 = 2.4×10−4

After correction error rate (CER %) Feedback F1,23 = 6.78 p < .05 η2 = 4.9×10−2

Display F1,23 = 0.02 p = .90 η2 = 6.8×10−5

Feedback x Display F1,23 = 0.02 p = .89 η2 = 1.0×10−4

Table 2. Details of two-way repeated measures ANOVA. Significant differences are highlighted in bold.

Error rate
We report typing and recognition accuracy using character
error rate (CER). CER is the number of character substitutions,
insertions, and deletions needed to transform a participant’s
text into the target text divided by the characters in the target
(multiplied by 100). We report the before and after correction
CER. The before correction CER used the literal text the par-
ticipant typed before any autocorrection. The after correction
CER used the recognition result of our decoder.

Before correction error rates were lower in conditions with
the virtual keyboard: DESKTOPASSISTANT 8.3% and HM-
DASSISTANT 8.4% versus DESKTOP 11.2%, and HMD 11.8%
(Figure 3 and Table 1). Participants’ lower before correction
error rates using the virtual keyboard assistant were significant
(Table 2). There was not a significant difference in before
correction error rates between the HMD and desktop display.

Conditions with the virtual keyboard also had a lower error
rate after decoding: DESKTOPASSISTANT 2.6%, and HM-
DASSISTANT 2.6% versus DESKTOP 3.9% and HMD 4.0%.
Participants’ lower after correction error rates using the virtual
keyboard assistant were significant (Table 2). There was not
a significant difference in after correction error rate between
between the HMD and desktop display.

Before correction error rates were quite variable by partici-
pants as shown in Figure 4. The decoder reduced error rates
for all participants, with some participants experiencing large
gains in accuracy. All but four participants achieved an after
correction error rate of less than 5% CER.

Recall that we removed 15 entries from our analysis due to
participants erroneously ending their sentence three or more
words early. We also conducted statistical analysis on the data
without these entries removed. All the statistical conclusions
were the same. The main difference in results was a some-
what elevated before correction error rate: DESKTOP 11.5%,
DESKTOPASSISTANT 8.8%, HMD 12.8%, and HMDASSIS-
TANT 8.5%. The after correction error rate was also somewhat
elevated: DESKTOP 4.3%, DESKTOPASSISTANT 3.1%, HMD
5.2%, and HMDASSISTANT 2.7%.

DISCUSSION AND CONCLUSIONS
Our results show the live feedback offered by the virtual
keyboard assistant significantly reduced participants’ error
rates. Even though our feedback was of already committed
keystrokes, users were still able to leverage this feedback to
improve performance. We conjecture the feedback may have
allowed users to correct mistakes such as offset hand position
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Figure 4. Participants’ average error rate across all conditions before
and after correction.

making them more accurate from that point on. It may also
have provided a visual reminder of the QWERTY layout. Be-
cause most participants self-reported as touch typists, these
results are only applicable to proficient typists.

Our autocorrection algorithm clearly improved users’ accu-
racy across all conditions, even in the face of inaccurate input.
Typing while wearing an HMD was slower, but not substan-
tially more error prone than typing in a more normal desktop
situation with a visually-occluded keyboard. We conjecture
that HMD entry rates were slower due to unfamiliarity with
the device, but since the visual information was largely the
same across displays, error rates were similar. Further work
is needed to better understand why HMDs seemingly affected
speed but not accuracy.

We only tested entry of A–Z and apostrophe. We think our
approach of a virtual keyboard assistant might be especially
useful in the case of entry of less common characters such as
symbols, numbers, or chorded keystrokes, though such text
would also be more difficult to recognize accurately.

In summary, we found a virtual keyboard providing live feed-
back coupled with an autocorrection algorithm substantially
improved users’ typing performance while wearing an HMD.
A notable advantage of our approach is that it does not require
any tracking devices or external cameras, making it readily
usable without additional hardware. This could be a significant
factor for some users who are on a budget or do not have the
space to install additional devices. A system that does not “in-
trude” on the virtual environment by superimposing real-world
imagery over the virtual imagery might also be less distracting
for HMD users. Our findings suggest software-only solutions
for improving users’ ability to interact with physical devices
while wearing an HMD are worth continued investigation.
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