
Efficient Correction Interfaces for

Speech Recognition

Keith Vertanen

Darwin College

Inference Group

Cavendish Laboratory

University of Cambridge

A dissertation submitted in candidature for the degree of

Doctor of Philosophy

April 2009

http://www.dar.cam.ac.uk/
http://www.inference.phy.cam.ac.uk/is/
http://www.phy.cam.ac.uk
http://www.cam.ac.uk

Abstract

The recognition of speech by computers is a challenging task and

recognition errors are ultimately unavoidable. Error correction is thus

a crucial part of any speech recognition interface. In this thesis, I look

at how to improve the correction process in speech recognition.

Before errors can be corrected, they must first be detected. I look at

improving error detection by visualizing the recognizer’s confidence

in each word. After detection, errors must be corrected. I examine

three distinct ways of correcting errors: by speech, by touch, and

by navigation. I also look at applying touch-based correction to the

problem of entering web search queries by voice.

I tested several new correction interfaces in a series of user studies. I

found that using my touch-based interface, Parakeet, users wrote at 13

words per minute while walking outdoors. Using my navigation-based

interface, Speech Dasher, users wrote at 40 words per minute using

only speech and a gaze tracker. Using a system I built for entering

web search queries by voice, users entered queries in about 18 seconds

while walking indoors. In these user studies, the speech recognizer’s

initial error rate, prior to user correction, was high. But by using a

good correction interface, I found users were able to complete their

tasks easily and efficiently.

Declaration

I hereby declare that my dissertation entitled “Efficient Correction

Interfaces for Speech Recognition” is not substantially the same as any

that I have submitted for a degree or diploma or other qualification

at any other University.

I further state that no part of my dissertation has already been or is

being concurrently submitted for any such degree or diploma or other

qualification.

Except where explicit reference is made to the work of others, this

dissertation is the result of my own work and includes nothing which

is the outcome of work done in collaboration. This dissertation does

not exceed sixty thousand words in length.

Date: Signed: ...

Keith Vertanen

Darwin College

Cambridge

September 24th, 2009

Acknowledgements

First and foremost, I would like to thank my supervisor David.

Throughout this work he has been a constant source of good ideas

and encouragement. It’s been grand and I’ve learned a lot.

Thanks to Inference Group members past and present for helpful ad-

vice and conversations over the years. In particular, I’d like to ac-

knowledge Per Ola for his help and advice, for the productive col-

laborations, and for being a valuable sounding board for ideas. To

Oli my writing-up buddy, it’s been great – but let’s not do it again.

Thanks to Carl for his Python wizardry. Thanks to Chris and 001

(Phil) for their help with Dasher. Thanks to Tamara, 002 (Philip),

and 003 (Philipp) for valuable feedback on my interfaces.

Thank you to Matt Stuttle and Phil Woodland for their help with

the HTK toolkit. Thanks to David Huggins-Daines for his help with

the PocketSphinx recognizer. Thanks to Anna Langley for digging up

corpora from the CUED archives. Thanks to Alan Blackwell and the

other members of the Rainbow Group for helpful advice.

What lies inside would be more painful to read if it weren’t for the

tireless efforts of my personal proofreading team. Thanks to: David

MacKay, Per Ola Kristensson, Tony Robinson, Dave English, Cather-

ine Breslin, Philip Sterne, Tamara Broderick, Oliver Stegle, and Fergal

O’Shea.

A huge thank you to all the folks who took time out of their busy

lives to take part in my many user trials. It really did take a village.

Thanks to Tobii for loaning us a gaze tracker. Thanks to Nuance for

donating a copy of the Dragon NaturallySpeaking SDK. Thanks to

Nokia for donating some of the devices used in my research. Thanks

to Gaggia for the caffeine.

None of this would have been possible without the Clerk Maxwell

scholarship provided by the Cavendish Laboratory. I am also indebted

to Nokia for providing additional financial support.

To my family and friends back in the US. I appreciate your pa-

tience and support throughout my (seemingly) never-ending educa-

tion. Sorry for missing so much while I was here in Cambridge. To

Mom, Dad, Michelle, Tim, Melissa, Chris, and Kristian – thanks for

all the encouragement and for looking after me on my many visits.

To all the friends I’ve made in Cambridge – thank you for the good

times, the many adventures, and for making my time here so great.

Contents

1 Introduction 1

1.1 The Problem . 1

1.2 Important Themes . 2

1.3 Overview and Contributions . 3

2 Visualizing Recognition Confidence 7

2.1 Overview . 7

2.2 Confidence Visualization . 9

2.3 Speech Recognition . 11

2.4 User Study . 14

2.5 Results and Discussion . 18

2.6 Limitations . 29

2.7 Related Work . 31

2.8 Conclusions . 34

3 Spoken Corrections 35

3.1 Overview . 35

3.2 Data Collection . 37

3.3 Analyzing Speech During Corrections 41

3.4 Recognition Experiments . 45

3.5 Improving Recognition of Short Corrections 54

3.6 Related Work . 58

3.7 Conclusions . 62

i

4 Speech Dasher 65

4.1 Overview . 65

4.2 Design Principles . 67

4.3 Interface Description . 69

4.4 Probability Model . 73

4.5 Speech Recognition . 81

4.6 User Study . 82

4.7 Discussion . 101

4.8 Related Work . 106

4.9 Conclusions . 108

5 Touch-Screen Mobile Correction 109

5.1 Overview . 109

5.2 Design Principles . 111

5.3 Interface Description . 114

5.4 Predictive Software Keyboard . 122

5.5 Mobile Speech Recognizer . 124

5.6 User Study . 131

5.7 Discussion . 148

5.8 Related Work . 154

5.9 Conclusions . 156

6 Open Vocabulary Recognition for Web Search 159

6.1 Overview . 159

6.2 The Large Vocabulary Problem 161

6.3 Letter-to-Phone Conversion . 163

6.4 Letter-to-Phone Experiments . 171

6.5 Word+Graphone Language Models 178

6.6 Word+Graphone Experiments . 183

6.7 Web Search Query Corpus . 190

6.8 Web Search Experiments . 192

6.9 User Study . 198

6.10 Related Work . 203

6.11 Conclusions . 207

ii

7 Conclusions 211

7.1 Final Thought . 212

A Speech Recognition Basics 215

A.1 Statistical Formulation . 215

A.2 Acoustic Modeling . 216

A.3 Language Modeling . 222

A.4 Decoding . 224

A.5 Result Representations . 225

A.6 Performance Metrics . 227

B Corpus of Spoken Dictation and Corrections 229

B.1 Detail of Tasks . 229

B.2 All Cumulative Distributions . 233

C Joint Multigram Derivation 237

C.1 Latent Variable Formulation . 237

C.2 Expectation Maximization . 239

D Mathematical Details 247

D.1 Cumulative Distribution Error Bars 247

D.2 Maximization Proof . 249

E Corpora Details 251

E.1 English Gigaword Text Corpus . 251

E.2 CSR-III Text Corpus . 251

E.3 TIMIT Corpus . 252

E.4 WSJ0 and WSJ1 Corpora . 252

E.5 WSJCAM0 Corpus . 254

References 255

iii

iv

Chapter 1

Introduction

This thesis is about improving speech recognition interfaces by making the cor-

rection process easier and more efficient. I will look at how to best utilize the rich

information available to the recognizer to better enable user-guided correction. I

will show that speech recognition does not necessarily need to be perfect to be

useful. I will demonstrate that even at high initial recognition error rates, an

appropriate interface allows users to complete their tasks quickly.

1.1 The Problem

Writing text on a computer is no longer an isolated activity reserved for a few

skilled office workers. It is something that most people want to or need to do

everyday. There are essays to write for school, emails to send at work, and text

messages to send to friends. But all these activities require some method to input

our thoughts into the computer. The keyboard is currently the de facto standard

for text input on a computer.

For most users, the keyboard is an easy-to-use and effective tool for inputting

text. Unfortunately, the keyboard is not a solution in all cases. Some people have

a temporary or permanent disability which prevents them from using a keyboard.

Some computing devices are small and may lack the space for a full-size keyboard.

In such cases, an alternate text entry method is required. In this thesis, I explore

one such alternative: speech recognition.

1

CHAPTER 1. INTRODUCTION

While there has been great progress in improving accuracy, speech recognition

is still not perfect. Recognition errors will sometimes occur and those errors will

need correction by users. This user-guided correction of speech recognition errors

is the central problem I address in this thesis.

1.2 Important Themes

In this thesis, I propose and test a number of novel speech recognition interfaces.

These interfaces and the evaluations thereof, all share a number of important

themes:

• Use all information – Speech recognizers work hard to search through

a multitude of possibilities before deciding on the best recognition result.

But when this best result is wrong, there is still useful information that can

be gleaned from the recognizer’s search. My interfaces will leverage this

information to better enable user-guided correction.

• Don’t be a slave to the numbers – My interface designs were often

informed by computational experiments carried out on recorded audio. But

I did not let the results of those experiments dictate my designs. In several

cases, I made choices that were suboptimal from the standpoint of the

numbers, but in my judgment resulted in interfaces that were easier to

understand and use.

• Understand the envelope – Knowing how well an interface does at one

particular recognition operating point is not that informative. Recognition

accuracy is a moving target. It varies depending on the current state of

recognition technology, as well as on the specifics of the recognition task.

In this work, I try understand the performance envelope of each design.

This envelope shows how well the interface performs at a variety of recog-

nition error rates. This provides a clearer picture of how an interface might

perform given a newer recognizer, a harder task, etc.

2

1.3 Overview and Contributions

1.3 Overview and Contributions

Each chapter discusses a different topic or interface related to correcting speech

recognition errors. Each chapter stands on its own and the chapters can be

read in any order. I assume the reader has a basic understanding of speech

recognition. For an overview of speech recognition, see appendix A.

Here is a short summary and a list of the highlights of each chapter:

Chapter 2: Visualizing Recognition Confidence

A recurring idea in the speech field has been to

convey to the user the recognizer’s confidence in

its result. I test whether underlining likely er-

rors in a shade of red makes users faster or more

accurate at detecting errors.

• Underlining likely errors did not make users faster or more accurate overall.

• Users found correctly underlined errors more often, but tended to miss errors

that failed to be underlined.

Chapter 3: Spoken Corrections

I analyze how users change their speech in the

face of recognition errors. I study the impact

these changes have on recognition accuracy us-

ing three different speech recognizers. I look at

how to better recognize corrections consisting of

a single word or part of a sentence.

• Users significantly alter their speech in response to recognition errors.

• Hyperarticulate speech was no harder to recognize than normal speech.

• Recognition of short, single word or partial-sentence corrections was difficult.

• Adapting the model to short corrections improved accuracy by 13% relative.

3

CHAPTER 1. INTRODUCTION

Chapter 4: Speech Dasher

I describe Speech Dasher, an interface that allows

users to easily perform corrections by navigating

through the speech recognition hypothesis space.

I demonstrate the effectiveness of Speech Dasher

in a user study in which participants wrote using

only speech and their gaze (obtained via a gaze

tracker).

• Adding speech to Dasher doubled users’ writing speed.

• Users wrote at 40 words per minute using just speech and gaze. This was

despite an initial recognition word error rate of 22%.

• Speech Dasher degraded gracefully in the face of errors. Even a user with a

high recognition error rate of 47% still wrote slightly faster with Speech Dasher

compared to using Dasher without speech.

Chapter 5: Touch-Screen Mobile Correction

I describe Parakeet: a touch-screen interface

designed for efficient mobile text entry using

speech. Users correct errors by selecting words

from a confusion network or by using an on-

screen keyboard. In a user study, participants

used Parakeet both while seated indoors and

while walking outdoors.

• In computational experiments, Parakeet’s confusion network interface allowed

correction of over half of all recognition errors.

• Users took advantage of the confusion network interface to correct errors when-

ever possible.

• Users wrote at 13 words per minute while walking outdoors. This was despite

significant recognition delays and a word error rate of 26%. As a reference

point, users of T9 wrote at 16 words per minute while seated indoors after 15

sessions [162].

• Without recognition delays, users would have written at 26 words per minute

while walking outdoors.

4

1.3 Overview and Contributions

Chapter 6: Open Vocabulary Recognition for Web Search

I describe methods to handle large vocabularies

by automatically generating pronunciations and

by allowing recognition of novel words. I built a

system to recognize spoken web search queries.

In a user study, participants used my system to

enter queries on a mobile device while walking.

• Accurate letter-to-phone conversion is possible using simple letter/phone units

combined with standard n-gram language modeling techniques. My best model

had a phone error rate of 6.5%.

• A new technique incorporating out-of-vocabulary words into word confusion

networks helped reduce word error rates.

• A corpus of 10 million search queries was collected over a period of 4 years.

• Using the search query corpus, letter-to-phone conversion, and open vocabulary

recognition, the word error rate on spoken web search queries was reduced by

34% relative compared to an in-vocabulary newswire language model.

• Users spoke and corrected web search queries in 18 seconds while walking. As

a reference point, Google reports web search queries took about 40 seconds to

enter from a phone or PDA [79].

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Visualizing Recognition

Confidence

2.1 Overview

In a typical speech dictation interface, after the user speaks their desired text, the

best recognition hypothesis is displayed as normal, unannotated text. The user

must then proofread this unannotated text and spot any recognition errors. De-

tecting recognition errors can sometimes be difficult as errors often involve subtle

changes in spelling (e.g. “were” versus “where”) or the inclusion or exclusion of

small words (e.g. “a” or “to”). An interesting question is whether users would

perform corrections faster or more accurately if the recognizer provided feedback

about locations that were predicted to be possible recognition errors. In this chap-

ter, I investigated providing such feedback about likely word errors using shaded,

red underlining (see figure 2.1). The intensity of the red underlining was based

on a measure of the recognizer’s confidence in each word in the best hypothesis. I

created a speech interface that conveyed information about low-confidence words

to the user. I then conducted a study to investigate if confidence visualization

improved users’ detection of errors.

While there have been numerous studies in which users dictate text and cor-

7

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

Figure 2.1: Example of a recognition result with red underlining for low-confidence

words. The actual sentence was “The prime minister and president are in good com-

pany”.

rect errors using unannotated recognition results (e.g. [45; 80; 86; 92]), there are

few studies that have used any sort of visualization of recognizer confidence. Two

studies that have looked at confidence visualization for correcting text are Suhm

et al. [139] and Endo et al. [47]. Suhm et al. found that confidence visualization

did not speed up corrections while Endo et al. found that confidence visualization

did slightly speed up corrections. Both studies measured the time it took users to

both detect and correct errors. Unlike these previous studies, here I focused on

the first part of the correction problem only: detecting errors. This has the ad-

vantage of eliminating the often time-consuming correction process. Performing

corrections can easily dominate a user’s task completion time, making any speed

improvement offered by confidence visualization difficult to measure. There are

several additional differences in my study compared to these two past studies.

In Suhm’s study, users experienced a high word error rate (WER) of 25%. In

contrast, I tested users at a much lower WER of 8%. This lower WER is similar

to what users might experience using a current commercial recognizer. In Endo’s

study, users experienced simulated recognition errors and were artificially forced

to correct all errors. I tested users on real recognition results and did not require

that users locate all errors.

The rest of this chapter is structured as follows. First, I describe the system

I built to investigate confidence visualization. Second, I describe the evaluation

I conducted to assess if confidence visualization benefited users. Third, I present

my results. Fourth, I discuss limitations of my study and point to avenues for

future research.

8

2.2 Confidence Visualization

the 0.8 sat 1.0

bat 0.1

delete 0.6

is 0.4

cat 0.6

fat 0.3a 0.2

Figure 2.2: Example word confusion network with four clusters. The best recognition

result is “the cat sat”. Confidence scores for the word hypotheses are shown on the

edges.

2.1.1 Publication Note

The work presented in this chapter was joint work with Per Ola Kristensson.

The information contained in this chapter was published in part in the paper

“On the Benefits of Confidence Visualization in Speech Recognition” at the ACM

Conference on Human Factors in Computing Systems (CHI 2008) [151].

2.2 Confidence Visualization

In this section, I describe the details of how I provided feedback to the user about

recognition confidence.

2.2.1 Word Confusion Networks

As a measure of confidence, I used the word posterior probabilities given by a word

confusion network (WCN) [104]. A WCN is a time-ordered sequence of clusters

where each cluster contains competing words and their posterior probabilities

(figure 2.2). The probabilities in a cluster sum to one. A WCN is built using

the time- and phonetic-overlap of words in a recognizer’s word lattice output.

Clusters in a WCN can contain a special “delete” word which represents the

hypothesis that nothing was said in that cluster. The best recognition result can

be obtained by taking the highest probability edge in each cluster.

9

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

Error type Before correction After correction

Substitution

Insertion

Deletion

Table 2.1: Examples of the three types of errors and their visualization in my system.

2.2.2 Substitution and Insertion Errors

The first class of recognition errors my system visualizes are substitution and

insertion errors. A substitution error is a word mistakenly recognized as another

word. An insertion error is an extra word which was mistakenly added. Both

errors result in visible words in the user’s display that need to be replaced in the

case of a substitution error, or deleted in the case of an insertion error.

Potential substitution errors and insertion errors were underlined using a 3-

pixel wide red line (see table 2.1). The red color of the line was made more

intense for words that were more likely to be a recognition error. The color was

calculated as a red-green-blue (RGB) color triplet using linear interpolation:

color = (1.0, c, c) (2.1)

where c is a word’s confidence score which is in the range [0, 1].

2.2.3 Deletion Errors

The second class of recognition errors my system visualizes are deletion errors.

A deletion error occurs when a word is missing from the recognition result. A

problem with deletion errors is they do not result in a word appearing in the best

recognition hypothesis. This can result in deletion errors going unvisualized if the

confidence scoring method used for visualization is based solely on words in the

best result (as is the case for methods such as n-best homogeneity [27], hypothesis

10

2.3 Speech Recognition

density [84], acoustic stability [50], or word graph posterior probabilities [84]).

Instead, by using a WCN for confidence scoring, I was able to use the presence of

the delete word and its associated probability to provide information about when

deletion events may have occurred. For example, in figure 2.2, the recognizer’s

best hypothesis is that there was no word between “cat” and “sat”. But the

probability of the delete word between “cat” and “sat” was 0.6 with the word

“is” also having a large probability of 0.4. This provides evidence that a deletion

event may have occurred here.

I developed a technique for visualizing deletion errors. Possible deletion errors

were visualized as empty horizontal gaps at the position where the deleted words

should have been in the text (see table 2.1). These horizontal gaps make it easier

for the user to select deletion errors as Fitts’ law [52] tells us that larger targets

are faster to click than smaller targets (assuming the same amplitude). Also, an

error with a low confidence is more likely to be a true error and thus a larger gap

makes the potential error more noticeable. In my system, I made the width (in

pixels) of the horizontal gap denoting a deletion error a function of the confidence

score c:

w = 1 + 15 · (1− c) . (2.2)

Besides the empty horizontal gap, I also indicated possible deletion errors by

underlining the horizontal gap in red in the same manner as substitution and

insertion errors.

2.3 Speech Recognition

In this section, I describe the details of the speech recognizer I used for my

confidence visualization experiment.

11

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

2.3.1 Acoustic and Language Model

I used the CMU Sphinx speech recognizer. I trained a UK-English acoustic model

on 16 hours of WSJCAM0 data [124] using my Sphinx training recipe described

in [147] (slightly modified for UK-English). I used a 3-state left-to-right HMM

topology using cross-word triphones.

I parameterized audio into a 39-dimensional feature vector consisting of 12

Mel-frequency cepstral coefficients plus the 0th cepstral, deltas and delta deltas.

The model had 3000 tied-states with each state having 8 continuous Gaussians

with diagonal covariance matrices. I used the CMU phone set without stress

markings (39 phones plus silence).

I trained a trigram language model using newswire text from the CSR-III text

corpus [64] (222M words). I trained the language model with interpolated modi-

fied Knesser-Ney smoothing and a count cutoff of 1 for unigrams, 1 for bigrams,

and 3 for trigrams. The language model’s vocabulary was the top 5K words oc-

curring in the corpus and included verbalized commas and periods. The resulting

language model had 3.2M bigrams and 5.7M trigrams. I created the recognizer’s

pronunciation dictionary from the BEEP UK-English dictionary [123] with addi-

tional words and pronunciation variants added from the CMU US-English dictio-

nary [25].

My software combined PortAudio [15] for audio capture, Sphinx-3 [128] for

speech decoding, and SRILM [138] for lattice pruning and word confusion network

creation. I streamed audio sampled at 16 kHz to the recognizer as soon as the

user enabled the microphone. I used cepstral mean normalization based on a

prior window of audio.

2.3.2 Gender and Speaker Adaptation

I created gender-dependent models by adapting the model’s means using max-

imum likelihood linear regression (MLLR) [96] with 40 regression classes (one

class for each of the 40 base phones). This was followed by maximum a-posteriori

12

2.3 Speech Recognition

(MAP) adaptation [59] of the means, variances, mixture weights and transition

probabilities.

I further adapted the gender-dependent models to each participant’s voice

using 29 sentences collected at the start of each participant’s session. For adap-

tation material, I used 17 phonetically diverse sentences from the WSJ corpus

[118]. In addition, I had each participant read 12 sentences which were similar

in style to the target paragraphs used in the main study. This not only gave me

more adaptation data, but also allowed participants to practice reading text in

which they had to verbalize commas and periods. I created speaker-dependent

acoustic models by using MLLR-adaptation with 1 regression class followed by

MLLR-adaptation with 7 regression classes. I created the 7 regression classes by

dividing the 40 base phones according to their place of articulation.

2.3.3 Word Error Rate Target

In order to gather data relevant to real-world applications, I wanted my experi-

mental system to have a WER similar to what novices might encounter using a

modern commercial recognizer. Past user studies using commercial speech rec-

ognizers for dictation-style tasks have reported WERs of 6–11% [81], 7–15% [45],

and 15% [86].

These prior studies used somewhat outdated versions of commercial recog-

nizers. I wanted to know what error rate a novice might expect using a current

state-of-the-art recognizer. So I conducted my own testing with Nuance Dragon

NaturallySpeaking v9. For my testing, I used a corpus of speech collected in prior

work [148] (see also chapter 3). This corpus consisted of 24 novices who had each

adapted Dragon’s acoustic model to their own voice using the “Talking to your

computer” enrollment text. For test data, I used utterances from my corpus in

which participants had spoken 42 sentences from the San Jose Mercury sentences

in the WSJ1 si dt s2 (Spoke 2) test set [5]. Each participant recorded every

sentence twice yielding a total of 2016 test set utterances. My chosen subset of

WSJ1 si dt s2 was somewhat hard by design as it included some sentences with

proper names and uncommon vocabulary. My subset had an out-of-vocabulary

13

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

(OOV) rate of 6.9% using the WSJ 20K-vocabulary and 3.1% using the WSJ 64K-

vocabulary. Using participants’ speaker-dependent acoustic models and Dragon’s

maximum accuracy setting, I found an overall WER of 7.9%.

Given the error rates of past studies and my own experiment with Dragon, I

decided to target a WER of around 8% for my study. Prior to the study, I tested

my Sphinx recognition setup to ensure I was operating at close to my WER

target. I tested recognition on 19 speakers from the WSJCAM0 5K-vocabulary

test set (si dt 5b). I adapted each speaker’s acoustic model using 35 utterances

from that speaker. On this test set, my recognizer had a 9.5% WER, operating

at 0.6 × real-time (recognition took 0.6 times as long as the total audio time).

During my experiment, to be described shortly, my actual study participants had

a WER of 8.5%.

2.4 User Study

In this section, I describe the user study I conducted to evaluate whether confi-

dence visualization was beneficial to users. I used a within-subjects experimental

design with two conditions:

1. Baseline – Words were presented without confidence visualization.

2. Visualization – Confidence scores from the recognizer were used to under-

line likely errors in red.

2.4.1 Participants and Apparatus

I recruited 16 volunteer participants from the university campus (13 men, 3

women). Their ages ranged between 22 and 33 (mean = 26.6, sd = 2.7). They

were paid £5 for participating in a single 45-minute study session. Participants

used a Dell laptop with a 15′′ screen with a resolution of 1400 × 1280. They wore

a Plantronics DSP-400 USB headset microphone.

14

2.4 User Study

2.4.2 Method and Setup

Each participant first trained the speech recognizer for about 10 minutes. The

participant then proceeded to their first condition (either the visualization or

baseline condition depending on their order). The order of conditions was coun-

terbalanced across participants.

In each condition, the participant spoke short paragraphs consisting of 1 to

2 sentences from the set-aside directory of the CSR-III newswire corpus. These

sentences were excluded from language model training. The average paragraph

length was 20 words, in line with a previous study by Suhm [139]. All para-

graphs used only words that were in the 5K-vocabulary of the speech recognizer.

I chose a small in-vocabulary task so my research recognizer would have a WER

similar to current commercial recognizers. The order in which participants re-

ceived paragraphs was counterbalanced across participants. In each condition,

the participant did 1 practice and 20 trial paragraphs. During the first practice

paragraph, an experimenter described how to use the interface. The practice

paragraph was excluded from all analysis.

After each condition, the participant filled in a brief questionnaire. Between

the two conditions, the participant was given a 5-minute break. After the last

condition, the participant filled in a final questionnaire.

In both conditions, I presented the target paragraph to the participant in a

text box (figure 2.3). To encourage reading of the paragraph before speaking, I

displayed the paragraph in a teleprompter-style (each character was added to the

text box after a small time delay). After the entire paragraph was displayed, the

participant pressed a Begin speaking button to start streaming audio to the

recognizer. After finishing speaking, the participant pressed a Stop speaking

button.

After a small recognition delay of 2.3 s ± 1.9 s, a beep alerted the participant

that recognition was complete and a Begin correcting button appeared. In

case the participant had misspoken, a Try again button allowed the participant

to dictate the paragraph again. When the participant pressed the Begin cor-

15

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

Figure 2.3: Screenshot of the experimental interface. The participant has just dictated

the text in the top text box. But the recognition result is not displayed in the bottom

text box until the Start correction button is pressed.

recting button, the target paragraph was hidden and the recognition result was

displayed. In the visualization condition, red underlining denoted possible recog-

nition errors (figure 2.4). In all other aspects, the interaction in each condition

was identical.

The participant was instructed to “quickly and accurately” indicate all errors

in the recognized text by clicking on them. When an error was clicked, it was

automatically corrected. This was possible because the software knew the correct

text. If something was clicked that was already correct, it was left unchanged (but

the click was logged as a mistake). I emphasize that I used “oracle” knowledge

(that is knowledge of the target paragraph) only to perform automatic correction;

the recognized text and confidence scores were obtained from real recognition

results from the participant’s audio. Furthermore, all aspects of the confidence

visualization display used only the recognition output and made no use of oracle

knowledge.

16

2.4 User Study

Figure 2.4: Screenshot of a recognition result with confidence visualization. Words with

low-confidence are underlined in a shade of red. The more intense the red underlining,

the higher the chance that word is an error. When the user positions the mouse over a

word, the word is outlined with a blue box. If the user clicks on a word that is an actual

error, the word is automatically replaced with the correct word.

I did not allow manual correction of errors since I was interested in whether

visualization enabled faster error detection. If I had allowed corrections, the time

required to perform corrections would likely have dominated. While in principle, a

participant’s correction time could be deduced by observing mouse and keyboard

activity, it introduces a potential confounding random variable. It is possible

that while manually correcting an error (e.g. by re-positioning the text caret and

erasing the incorrect word), the participant might also discover errors in other

parts of the text. This would make it difficult to accurately separate the error

detection time from the error correction time.

After the participant corrected a paragraph to the best of his or her ability,

the participant pressed the Finished correction button and proceeded to the

next paragraph.

17

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

Baseline Visualization

0
5

1
0

1
5

2
0

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

(a) Detection time

Baseline Visualization

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

E
rr

o
r

re
d

u
c
ti
o

n
 (

%
)

(b) Error reduction rate

Figure 2.5: The two main metrics analyzed for each condition. Detection time (left)

measured how long it took to complete corrections. Error reduction rate (right) measured

how many recognition errors were successfully corrected.

2.5 Results and Discussion

In this section, I present and discuss my results from the user study. I give both

quantitative measures of user performance and also qualitative feedback obtained

from paper questionnaires.

2.5.1 Detection Time

I defined detection time as the duration (in seconds) between the user pressing

the Start correction button and pressing the Finished correction but-

ton. The mean response time was 9.7 s ± 3.6 s in the visualization condition and

9.0 ± 3.2 s in the baseline condition (figure 2.5a). Repeated measures analysis of

variance showed that this difference was not significant (F1,15 = 0.85, p = 0.37).

18

2.5 Results and Discussion

2.5.2 Error Reduction Rate

I measured the error reduction rate by taking the number of recognition errors

corrected by the participant and dividing by the total number of recognition

errors. For example, if the recognizer made 40 errors and the participant corrected

30, the error reduction rate was 75%. I determined the significance of error

reduction rates between the conditions by using repeated measures analysis of

variance.

Participants reduced 84% ± 10% of errors in the visualization condition and

81% ± 7% in the baseline condition (figure 2.5b). The difference in error re-

duction rate was not significant (F1,15 = 0.79, p = 0.39). Overall, confidence

visualization did not improve participants’ ability to detect errors.

However, I was curious why visualization did not help. A possible problem is

that confidence scores are imperfect and can lead to mistakes in the confidence

visualization. These mistakes can cause real recognition errors to be missed (false-

accepts) or cause correct words to be flagged as errors (false-rejects). In my

system, a confidence score > 0.9 resulted in so pale an underlining as to be almost

imperceptible. I therefore split my errors into two sets: visibly underlined errors

(confidence ≤ 0.9), and not visibly underlined errors (confidence > 0.9). At this

implicit threshold of 0.9, my false-accept rate was 3.4% (non-visibly underlined

words that were errors) and my false-reject rate was 7.7% (visibly underlined

words that were correct).

For errors with a confidence > 0.9 (errors that were visibly underlined to par-

ticipants in the visualization condition), participants’ mean error reduction rate

was 92% ± 8.9% in the visualization condition and 80% ± 9.6% in the baseline

condition (figure 2.6a). The 12% increase in participants’ ability to reduce er-

rors in the visualization condition was statistically significant (F1,15 = 15.38, p =

0.001). This means that confidence visualization helped participants detect more

low-confidence errors than in the baseline. However, since I found overall vi-

sualization did not improve participants’ error reduction rate, this win must be

balanced by a loss somewhere else. Indeed, for errors with a confidence > 0.9, par-

ticipants’ error reduction rate was 82%±11% in the baseline but only 71% ± 20%

19

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

Baseline Visualization

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

E
rr

o
r

re
d

u
c
ti
o

n
 (

%
)

(a) Visibly underlined

Baseline Visualization

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

E
rr

o
r

re
d

u
c
ti
o

n
 (

%
)

(b) Not visibly underlined

Figure 2.6: Error reduction rate in the two conditions depending on whether errors

were visibly underlined (left) or not visibly underlined (right).

in the visualization condition (figure 2.6b). Although this result was not quite

significant (F1,15 = 3.40, p = 0.09), this reduction in users’ ability to detect unan-

notated errors in the visualization condition explains why confidence visualization

did not, overall, improve error detection.

I draw two conclusions from the error reduction results. First, confidence

visualization did work in the sense that participants took advantage of the red

underlining to detect recognition errors. Second, it is plausible that participants

trusted confidence visualization and stopped actively verifying non-highlighted

words. Their trust in confidence visualization may have caused erroneous words

that were not strongly underlined to go undetected.

2.5.3 Error Reduction by Type

During the study, 68% of word errors were substitution errors, 13% were insertion

errors, and 19% were deletion errors. As previously discussed, overall, partici-

pants’ ability to reduce errors was not improved by confidence visualization. But

perhaps confidence visualization was helpful for a particular type of recognition

20

2.5 Results and Discussion

Baseline Visualization

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

E
rr

o
r

re
d

u
c
ti
o

n
 (

%
)

(a) Substitution errors

Baseline Visualization

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

E
rr

o
r

re
d

u
c
ti
o

n
 (

%
)

(b) Insertion errors

Baseline Visualization

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

E
rr

o
r

re
d

u
c
ti
o

n
 (

%
)

(c) Deletion errors

Figure 2.7: Error reduction rate in the two conditions depending on the type of recog-

nition error.

error. For example, maybe users were much better at finding deletion errors due

to my visualization of this error type using a horizontal gap and red underlining.

For each type of error, I analyzed participants’ error reduction rates between

the two conditions. This analysis was post-hoc and therefore used a Bonferroni

correction [6].

• Substitution errors – Participants reduced 85% ± 9.7% of substitution

errors in the visualization condition and 81% ± 6.7% in the baseline con-

dition (figure 2.7a). This difference was not significant (F1,15 = 2.33, p =

0.15).

• Insertion errors – Participants reduced 85% ± 26% of insertion errors

in the visualization condition and 86% ± 27% in the baseline condition

(figure 2.7b). This difference was not significant (F1,15 = 0.013, p = 0.91).

• Deletion errors – Participants reduced 73% ± 28% of deletion errors in

the visualization condition and 73% ± 22% in the baseline condition (fig-

ure 2.7c). This difference was not significant (F1,15 = 0.0003, p = 0.99).

2.5.4 Recognition WER

Recall that I had targeted a WER of around 8% for my study. I came close to this

target with participants having a WER of 8.5% (averaged over both conditions).

21

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
1

0
2

0
3

0
4

0
5

0

Participant

R
e
c
o
g
n
it
io

n
 W

E
R

 (
%

)

Figure 2.8: Recognition WER (before correction) experienced by each participant in the

study over the 40 paragraphs tasks (combining the 20 paragraphs from each condition).

Despite adapting the acoustic model to each participant’s voice, I still observed

wide variability in error rates (figure 2.8). The best participant had a WER of

4.2% while the worst participant had a WER of 15.9%.

2.5.5 Incorrect Correction Attempts

Before the evaluation, I was concerned that participants might react to the col-

orfully underlined words by clicking on all of them to remove the underlining. In

the visualization condition, such behavior would have caused an inflated num-

ber of incorrect clicks (attempts to fix something that was correct). I calculated

participants’ average number of incorrect clicks per paragraph in each condition.

I found participants only occasionally committed incorrect clicks. In the visual-

ization condition, the mean incorrect clicks per paragraph was 0.20 ± 0.24. In

the baseline condition, the mean incorrect clicks was 0.27 ± 0.33. This difference

was not significant (F1,15 = 1.18, p = 0.30). Hence it appears participants were

careful and did not click on underlined items indiscriminately. As shown in fig-

ure 2.9, there was wide variability between participants in how often they clicked

22

2.5 Results and Discussion

0.0 0.2 0.4 0.6 0.8 1.0 1.2

7
0

7
5

8
0

8
5

9
0

9
5

Incorrect clicks / paragraph

E
rr

o
r

re
d

u
c
ti
o

n
 (

%
)

Figure 2.9: This plot shows how often participants clicked incorrectly and the error

reduction they achieved. Each point represents a single participant and combined data

from both conditions.

incorrectly and the error reduction they achieved.

2.5.6 Influence of WER on Performance

Typically, a recognizer’s word error rate has a strong influence on user perfor-

mance in a speech recognition interface. I looked at how my two main quantita-

tive measures, response time and error reduction rate, changed depending on the

recognition WER. For the response time analysis, I divided the total response

time by the number of words in the target paragraph.

In figure 2.10, the response time per word for each utterance is shown ver-

sus the WER. As expected, the higher the WER, the longer it took to correct

the paragraph. Simple linear fits to the data in each condition show that from

0% WER to 10% WER, response times roughly doubled. This shows the strong

influence recognition error rate has on the time required to proofread. As demon-

strated by the utterances at 0% WER, even completely correct recognitions had

23

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

0 10 20 30 40

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Recognition WER (%)

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
o
n
d
s
 p

e
r

w
o
rd

) Baseline

Visualization

Baseline fit

Visualization fit

Figure 2.10: This plot shows how the recognition WER (before correction) affected

participants’ response time (measured in seconds per word). The lines show simple

linear fits to the data in each condition.

significant time-related costs, requiring about 0.25 seconds per word for proof-

reading.

I also analyzed how well participants were able to correct paragraphs based

on the recognition error rate. Figure 2.11 shows the after correction WER given

the recognition WER. Paragraphs that had no errors corrected (those on the

diagonal of figure 2.11) accounted for 7% of all utterances. Only paragraphs with

lower WERs (below 20%) were found to have no errors corrected (figure 2.12a).

Apparently at higher WERs, the errors became so conspicuous that users noticed

at least some of them.

Paragraphs that had all errors corrected (those on the horizontal line of fig-

ure 2.11) accounted for 46% of all utterances. As demonstrated by the broad

distribution in figure 2.12b, for a wide range of recognition error rates, users were

24

2.5 Results and Discussion

0 10 20 30 40

0
1
0

2
0

3
0

4
0

Recognition WER (%)

A
ft
e
r

c
o
rr

e
c
ti
o
n
 W

E
R

 (
%

)

N
o

er
ro

rs
 c

or
re

ct
ed

All errors corrected

Baseline
Visualization

Figure 2.11: This plot shows how the recognition WER affected participants’ ability to

detect errors. The y-axis shows the remaining WER in each paragraph after correction

by the participant. Points on the diagonal line show paragraphs in which no errors were

corrected. Points on the horizontal line show paragraphs were all errors were corrected.

successful in correcting all errors.

2.5.7 Questionnaire

After each condition, participants filled out a questionnaire which asked them

to rate their agreement or disagreement with five statements on a 7-point Likert

scale (1 = strongly disagree, 7 = strongly agree). The five statements were:

• Liked the interface – “I liked the speech and display interface.”

• Easy to find errors – “I found it easy to find errors in the text.”

• Looked carefully for errors – “I had to look carefully at the text area

to spot errors.”

25

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

Recognition WER (%)

P
ro

p
o

rt
io

n
 o

f
p

a
ra

g
ra

p
h

s

0 10 20 30 40

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

(a) Error reduction of 0%

Recognition WER (%)

P
ro

p
o

rt
io

n
 o

f
p

a
ra

g
ra

p
h

s

0 10 20 30 40

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2

(b) Error reduction of 100%

Figure 2.12: Distribution over WER of paragraphs that saw no reduction in errors (left)

and paragraphs in which all errors were corrected (right).

• Accurate speech recognition – “The speech recognizer accurately rec-

ognized my speech.”

• Fun to use – “It was fun to use the speech recognition and display inter-

face.”

As shown in figure 2.13, I found only small differences in how participants

rated the statements between the two conditions. Overall, participants tended

to rate the system in both conditions somewhat positively. In particular, speech

recognition accuracy was rated highly with a mean score of 5.8 ± 0.5 in the visu-

alization condition and 6.0 ± 0.7 in the baseline condition.

2.5.8 Final Questionnaire

After competing both conditions, participants filled out a final questionnaire.

Participants were asked to rate their agreement or disagreement with four state-

ments on a 7-point Likert scale (1 = strongly disagree, 7 = strongly agree). The

four statements were:

26

2.5 Results and Discussion

Baseline Visualization

1
2

3
4

5
6

7

L
ik

e
rt

 s
c
a

le

(a) Liked the interface

Baseline Visualization
1

2
3

4
5

6
7

L
ik

e
rt

 s
c
a

le

(b) Easy to find errors

Baseline Visualization

1
2

3
4

5
6

7

L
ik

e
rt

 s
c
a

le

(c) Looked carefully for errors

Baseline Visualization

1
2

3
4

5
6

7

L
ik

e
rt

 s
c
a

le

(d) Accurate speech recognition

Baseline Visualization

1
2

3
4

5
6

7

L
ik

e
rt

 s
c
a

le

(e) Fun to use

Figure 2.13: How participants rated five statements about the interface after the

completion of each condition (1 = strongly disagree, 7 = strongly agree).

27

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

1 2 3 4

1

2

3

4

5

6

7

L
ik

e
rt

 s
c
a

le

Helped

locate

errors

Colored

were

errors

Color

was

distracting

Paid

attention

darker

1
2

3
4

5
6

7

Figure 2.14: How participants at the end of the experiment rated four statements

about the confidence visualization (1 = strongly disagree, 7 = strongly agree).

• Helped locate errors – “I used the colored underlining to help locate

errors.”

• Colored were errors – “Things with colored underlining were actual er-

rors.”

• Color was distracting – “The colored underlining was distracting.”

• Paid attention to darker – “I paid more attention to things underlined

with darker shades of red.”

As shown in figure 2.14, participants generally found confidence visualization

at least somewhat helpful and did not find it overly distracting.

Finally, participants were asked to chose which interface they preferred and

also to explain why. In response to the forced choice question, 69% of participants

said they preferred the interface with confidence visualization. So, similar to the

study by Burke et al. [24], users tended to subjectively report liking confidence

visualization. But I urge caution at drawing too strong a conclusion from such

a subjective reporting measure. It may be that participants rated the visualiza-

tion interface highly because they didn’t want to criticize my system. Reeves et

28

2.6 Limitations

al. [122] observed humans are reluctant to poorly rate a system if they perceive

the system is the fruit of the hard work of the person conducting the study. It

could also be that participants erroneously believed they had done a better job

of correcting in the visualization interface and thus rated this interface higher.

Here are some reasons people gave as to why they preferred the confidence

visualization interface:

• “Drew attention to subtle errors that might otherwise have been missed.”

• “Rapidly identified areas that need to be read carefully.”

• “You get some sense of feedback.”

• “Identified areas that needed to be read carefully.”

Here are some reasons people gave for preferring the baseline interface:

• “I ignored the underlining!”

• “I read the whole sentence rather than focusing on single words.”

• “The underlining didn’t seem to help or be that accurate.”

2.6 Limitations

In this section, I discuss some of the limitations of my study and suggest some

possible avenues for future research.

2.6.1 WER Operating Point

In this study, participants experienced a recognition WER of around 8%. This

was similar to the error rate I found novices experienced using Dragon v9. But

an experienced speech recognition user using the latest version of Dragon and

using well-trained acoustic and language models might have a substantially lower

WER. It is possible that confidence visualization would be more useful at a lower

WER operating point. As WERs approach 0%, users may become accustomed

29

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

to assuming the recognition result is right. In such cases, confidence visualization

could prove useful if it was accurate enough to point out the occasional suspect

word. But the exact behavior of humans using a confidence visualization system

at a lower WER would need to be tested experimentally.

2.6.2 Confidence Threshold

In my study, the point at which the red underlining became noticeably visible

imposed an implicit threshold of 0.9 on the probability obtain from the word

confusion network. At this threshold, the system had a false-accept rate of 3.4%

and a false-reject rate of 7.7%. This is just one possible operating point on the

detection error tradeoff (DET) curve [105] depicted in figure 2.15. It is possible

that participants would have benefited more from confidence visualization if the

red underlining had been used more or less often. On the one hand, underlining

too often might risk users ignoring the visualization altogether. On the other

hand, only underlining very likely errors might lead users to believe they do not

need to proofread the rest of their text. It would be interesting to do a further

study testing human performance at different false accept/reject operating points.

It might also be interesting to study the effectiveness of coloring schemes different

from the one I used.

2.6.3 Confidence Score Accuracy

For a measure of word confidence, I used the posterior probabilities from a word

confusion network. A closely related lattice-based technique uses the poste-

rior probabilities and timing information in the recognition lattice to produce

a confidence score [160]. Both the WCN- and lattice-based approaches to con-

fidence scoring provide state-of-the-art accuracy compared to other techniques

[48; 65; 160]. But it is possible that in the future more advanced methods will

produce more accurate confidence scores. For example, it has been suggested

that confidence scores could be improved by using information sources besides

the recognition lattice, such as syntactic or semantic information [77]. Improved

30

2.7 Related Work

0.0

2.0

4.0

6.0

8.0

10.0

0.0 2.0 4.0 6.0 8.0 10.0

Fa
ls

e
re

je
ct

 (%
)

False accept (%)

Visibly underlined

Figure 2.15: This curve shows the trade-off between false-accepts and false-rejects in

the visualization condition. A certain accept/reject threshold defines a point on this

curve. The confidence visualization in my study became (subjectively) visible at a false-

accept rate of 3.4% and a false-reject rate of 7.7% (denoted by the circle).

confidence scores would reduce the number of false-accept and false-reject errors,

potentially making confidence visualization more effective.

2.7 Related Work

In this section, I discuss past work related to confidence visualization.

To my knowledge, the earliest work on confidence visualization was by

Schmandt [126]. In this work, waveforms of dictated speech were displayed

alongside text from a word-spotting recognizer. The interface was designed to

aid in the editing of waveforms. The text was displayed in a brighter color

according to the recognizer’s confidence score. No user study was done to test

whether the varying brightness level was useful to users. Schmandt’s goal for

using confidence visualization was also different from mine. He wanted to draw

attention to correctly recognized words as they could serve as good reference

points into the audio. In contrast, I wanted to draw attention to incorrectly

31

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

recognized words to facilitate error detection.

Another application of confidence visualization is to help users understand

the gist of an audio file without actually listening to it. In Burke et al. [24], they

performed speech recognition on voice mail messages and shaded the recognition

results using a WCN-based confidence measure. Their objective was to allow

quicker reading of voice mail summaries by deemphasizing low-confidence words.

This objective was different from my goal of focusing user attention on potential

errors. Additionally, they never treated confidence visualization as an indepen-

dent variable. In a questionnaire, they did find that participants thought confi-

dence visualization was “helpful for identifying mistakes” (scoring 4.1 on a 5-point

scale where 5=completely agree). I also found participants subjectively reported

finding confidence visualization somewhat helpful for finding errors (scoring 4.7

on a 7-point scale). However, as previously mentioned, these subjective results

may be suspect as participants tend to rate a system highly in the presence of

the system’s designer [122].

Vermuri et al. [145] also tested the use of confidence visualization to improve

comprehension of audio recordings. In this study, participants saw both the

recognition result and heard the audio file. The recognition results were displayed

both with and without confidence visualization. No difference in participants’

comprehension rate was found. Again, their goal of aiding comprehension was

different from my goal of facilitating error detection in the context of a text

dictation task.

A number of studies have looked at using confidence visualization to aid users

in correcting errors. The first such study was by Suhm et al. [139]. In this study,

participants corrected speech recognition results using a speech- and pen-based

correction interface. Suhm et al. found no statistically significant difference be-

tween the corrected words-per-minute achieved using an interface with confidence

visualization and one without. Similarly, my results also showed no difference in

the time it took to detect errors with and without visualization. However, there

are several differences between their study and mine. First, the times Suhm mea-

sured included speech- or pen-based correction. In contrast, my study used an

32

2.7 Related Work

oracle to instantly correct errors that users detected. This allowed me to measure

error detection time – the time it takes to proofread recognized text and indicate

errors. Second, Suhm et al. had a 25% WER on their participants’ original

speech. This was much higher than my WER of 8.5%. I suspect that confi-

dence visualization becomes increasingly useless as WER increases due to the

large number of things highlighted. With such a high WER, it is likely that users

would ignore confidence visualization altogether and carefully check the entire

recognition result for errors.

A second study of a correction-style interface was by Endo et al. [47]. In

this study, they developed a mathematical model for how highlighting of low-

confidence words might speed the error correction process. They conducted a

user trial using simulated errors producing a WER of between 10 and 19%. Par-

ticipants were required to correct all errors in each sentence. Endo et al. showed

that using confidence visualization resulted in a 13% speedup in correction. This

difference was below the 46% performance predicted by their mathematical model.

The statistical significance of the difference was not reported.

Another study of a correction-style interface was by Collins et al. [35]. In

this work, they visualized machine translation and speech recognition results by

displaying the recognition lattice. They visualized confidence in the alternate

lattice paths by using color, border size and transparency. They used the lattice

visualization both to represent uncertainty and to facilitate the correction process.

No user study was reported regarding the effectiveness of their representation.

A possible application of confidence scores is to help users navigate more

efficiently to errors. Feng et al. [49] used confidence scores to place naviga-

tion anchors at likely error points in a user’s recognition result. In simulations,

confidence-based anchors required slightly fewer navigation commands than naive

fixed-interval anchors. They performed a user trial using confidence-based an-

chors, but did not compare it to a fixed-interval baseline.

33

CHAPTER 2. VISUALIZING RECOGNITION CONFIDENCE

2.8 Conclusions

I have presented a system capable of visualizing the recognizer’s confidence in

all three types of recognition errors: deletion, insertion and substitution. I used

this system to investigate if confidence visualization helped users find errors in a

dictation task.

An evaluation of my system showed that confidence-based underlining did

not, overall, improve users’ speed or accuracy at finding errors. However, un-

like previous work, I found that it was not confidence visualization per se that

caused the non-result. Rather, I found that when confidence visualization “did

the right thing” and highlighted incorrect recognition results, participants de-

tected significantly more errors when using visualization than without it. How-

ever, participants also trusted the confidence visualization and tended to miss

errors that (incorrectly) had a high confidence. This suggests that confidence

visualization must be used cautiously. A poor confidence measure may distract

attention away from legitimate errors, leading to an actual increase in user errors.

On the other hand, a good confidence measure may focus attention on errors that

would otherwise go unnoticed, leading to a decrease in user errors.

In my study, it seemed that confidence visualization was at a break-even point.

It neither helped nor hurt users’ ability to detect errors. Even using state-of-the-

art confidence scores and at a low word error rate, my system still mistakenly

underlined 8% of correct words and failed to underline 3% of erroneous words.

It is possible in the future, better confidence scores or more accurate recognition

may tip the balance in the favor of confidence visualization. But such a change

would need to be confirmed by empirical experiments.

34

Chapter 3

Spoken Corrections

3.1 Overview

When using a speech recognizer to dictate text, correcting errors dominates task

time [80; 86]. While users show a strong preference for correcting errors by voice,

this strategy usually proves error-prone, inefficient, and frustrating [66].

So why are spoken corrections problematic? A possible reason is that while

correcting dictation errors, people adopt a more hyperarticulated speaking style.

During error resolution, users have been shown to slow their speaking rate, add

pauses, and pronounce words more carefully [97; 115]. This change in speak-

ing style may cause a mismatch between users’ hyperarticulate speech and the

naturally-read speech typical of a recognizer’s training data. Some studies have

shown this mismatch has a negative impact on recognition accuracy. For exam-

ple, Bell et al. [13] and Shriberg et al. [131] showed an increase in recognition

errors for utterances users repeated after encountering errors in a spoken dia-

log system. Soltau et al. [133] showed an increase in errors for hyperarticulated

isolated words. However, not all studies show hyperarticulation has a negative

impact on accuracy. A study by Stent et al. [136] showed hyperarticulate speech

actually improved accuracy.

If hyperarticulation is problematic, a simple solution might be to instruct

35

CHAPTER 3. SPOKEN CORRECTIONS

users not to hyperarticulate. But this could prove difficult for users as it requires

users override a common strategy used in human-to-human communication [117].

Past work has found instructing users to always “speak naturally” reduces but

does not eliminate users’ tendency to hyperarticulate [131; 155].

Another possible problem with spoken corrections is they tend to be short,

often consisting of a single word or only a few words. These short correction

utterances could be problematic because they do not fit the full sentences typical

of the training data for the recognizer’s acoustic and language model.

So how do novice users speak to a dictation interface? Do they hyperarticu-

late? If so, what effect does this have on recognition accuracy? How is recognition

performance affected by the short utterances typical of spoken corrections? In this

chapter, I investigate these questions. To do this, I first collected speech data

using a simulated dictation interface. My dictation interface had users speak

sentences and then correct simulated errors by respeaking. Using three state-of-

the-art commercial and research speech recognizers, I conducted experiments to

see how users’ speaking style impacted recognition accuracy. I also explored how

to adapt a recognizer’s acoustic model to provide better accuracy on the short

utterances typical of spoken corrections.

This chapter is structured as follows. First, I describe a corpus I collected

of users dictating sentences and performing spoken corrections. Second, I ana-

lyze the audio in my corpus to show how the correction process affected users’

speech. Third, I perform recognition experiments to investigate what impact hy-

perarticulate speech has on recognition accuracy. Fourth, I investigate improving

recognition on corrections that consist of a single word or part of a sentence.

3.1.1 Publication Note

The work presented in this chapter was published in part in the paper “Speech

and Speech Recognition during Dictation Corrections” at the International Con-

ference on Spoken Language Processing (ICSLP 2006) [148].

36

3.2 Data Collection

3.2 Data Collection

In this section, I describe the procedure I used to collect speech of users dictating

sentences and performing spoken corrections. This audio data will serve as the

basis for the experiments in the rest of the chapter.

3.2.1 Participants

I recruited 24 volunteer participants to use a dictation-style interface. Partici-

pants were native speakers of North American English and had no prior expe-

rience dictating to a computer (one participant had experience dictating to a

human). Participants were gender balanced and aged from 24 to 59 (average 31).

A majority of the participants had Midwestern or Canadian ascents.

3.2.2 Conditions and Method

Participants were told they would be using a speech recognizer and correcting

any errors by respeaking parts of the text. This was not actually true, as the

“dictation” interface was merely recording their voices. Each trial took place in a

quiet office-like environment and used the same laptop and Plantronics DSP-400

USB headset microphone.

In part one of the experiment, participants completed the standard “Talk-

ing to your computer” enrollment session in Nuance Dragon NaturallySpeaking

v8.1. The enrollment text reminded participants multiple times to speak natu-

rally – like “newscasters read the news”. The enrollment session helped to teach

participants how to dictate to the computer. It also served to help fool partici-

pants into thinking the computer was doing actual recognition in the next phase

of the experiment. During enrollment, Dragon provided visual feedback of the

current location in the enrollment text via colored highlighting. If Dragon de-

tected problems with a section of speech, participants were required to speak that

section again.

37

CHAPTER 3. SPOKEN CORRECTIONS

Figure 3.1: The participant is being asked to respeak “but the get together wasn’t”.

The yellow background highlighting indicates which words the participant should respeak.

The words in red show the simulated recognition errors.

In part two of the experiment, participants read 42 newswire sentences drawn

from the San Jose Mercury sentences in the WSJ1 si dt s2 (Spoke 2) test set

[5]. A quarter of the sentences were hard by design, including words that were

not in the WSJ 20K and 64K vocabularies. Overall, the sentences had an out-

of-vocabulary (OOV) rate of 6.9% using the WSJ 20K vocabulary and 3.1%

using the 64K vocabulary. The order of the sentences, aside from two initial

practice sentences, was randomized for each participant. Participants were told

no recognition would occur in part two of the experiment and that they should

read the sentences “naturally”.

In part three of the experiment, participants were instructed to read the 42

sentences again but that this time the computer would try and recognize their

speech. After a “successful” recognition, a happy tone would play and the next

sentence would appear. After a “failed” recognition, a sad tone would play. After

a “failure”, a “recognition result” would appear below the original sentence with

word errors displayed in red (figure 3.1). A word, part of a sentence, or the entire

original sentence would then be highlighted in yellow and participants would

respeak the highlighted text. Participants repeated speaking the highlighted text

until recognition was “successful”. On some sentences, a final “speak-and-spell”

correction asked participants to spell a particular word after speaking that word

in the correction utterance (figure 3.2). If participants made a genuine speaking

mistake such as omitting a word, they were instructed to re-record that utterance.

In actuality, no recognition took place in part three. Participants’ audio

38

3.2 Data Collection

Figure 3.2: The participant is being asked to repeat a portion of the original sentence

and to both speak and spell the word “curtis”.

was recorded but had no influence on the “success” or “failure” of recognition.

Each sentence had a predetermined set of simulated errors which every person

experienced. These simulated errors were based in part on actual recognition

results I obtained reading the sentences to a desktop speech recognizer.

3.2.3 Corpus Statistics

The number of corrections per sentence was varied from zero to five with an av-

erage of 3.5 corrections per sentence. For any sentence with one or more errors,

participants were required to repeat a single word (8 sentences), a portion of the

sentence (16 sentences), or the entire sentence (8 sentences). A speak-and-spell

correction was recorded as the final correction for 10 of the partial-sentence cor-

rections and for 1 of the single-word corrections. The speak-and-spell utterances

were not used in the experiments presented in this chapter. For full details of the

sentences and corrections collected, see appendix B.1.

A total of 7.5 hours of audio was collected. Of this, 1.6 hours was adaptation

data from the Dragon enrollment session and 5.9 hours was from the reading of

sentences and corrections.

3.2.4 Utterance Types and Judging

In the rest of this chapter, utterances will be identified as follows:

39

CHAPTER 3. SPOKEN CORRECTIONS

• adapt - Adaptation utterance, collected during the initial Dragon “Talking

to your computer” enrollment session (part one of the experiment).

• pre - Complete sentence, collected before any simulated errors on any sen-

tence (part two of the experiment).

• init - Complete sentence, collected before any errors on that particular

sentence (part three of the experiment).

• err1-4 - Error correction, collected after a simulated error (part three of the

experiment). The participant would respeak a word, part of a sentence, or

an entire sentence (err1 is the first correction, err2 is the second correction,

etc).

As in [131], I judged the degree of hyperarticulation on each utterance us-

ing a three-point scale (0 = normal, 1 = somewhat hyperarticulate, 2 = strongly

hyperarticulate). I judged the utterances myself in random order and without

knowledge of the utterance type I was scoring.

3.2.5 Collection Errata

In the original design of the data collection experiment, users proceeded from

the Dragon enrollment session (part one of the experiment as described in sec-

tion 3.2.2) straight into using the interface with simulated recognition errors (part

three of the experiment). After observing the speech of the first two participants,

I realized participants might hyperarticulate in response to errors on past sen-

tences. As I wanted a naturally-read version of each sentence, I added an interme-

diate step in which I told participants that no recognition would take place and

that they should read each sentence “naturally” (part two of the experiment).

Participants one and two were subsequently asked to re-read the sentences after

being told no recognition would occur and that they should speak naturally. The

procedure for all other participants proceeded as described in section 3.2.2.

During part two of participant 13’s experiment, the microphone was mistak-

enly muted. This participant was asked to redo part two before proceeding to

40

3.3 Analyzing Speech During Corrections

part three. In informal interviews conducted after the experiment, participants

6 and 18 indicated they were suspicious about whether the computer was really

doing speech recognition. All other participants indicated that they believed the

computer was actually recognizing their speech.

3.3 Analyzing Speech During Corrections

In this section, I analyze the acoustic properties of the speech in my corpus.

3.3.1 Analysis Procedure

I first obtained word- and phone-segmentations of each utterance by aligning the

correct text transcription using the HTK recognizer [169]. I then calculated the

pitch, intensity, and formant frequencies of each utterance using the software

program praat [22].

For purposes of comparison, I analyzed just the audio sections in the pre and

init utterances corresponding to the words in the err1-4 utterances. I found the

corresponding sections in the pre and init utterances by using the segmentations

provided by the forced alignment. Speak-and-spell corrections were not included

in the err1-4 set. I excluded sentences with single word corrections from the

analysis as the audio segments were often very short and this caused difficulties

for praat’s pitch analysis algorithm.

I compared the utterance types using the cumulative distribution for each of

the speech factor I analyzed. I found two-sigma error bars by using the method

described in appendix D.1.

3.3.2 Duration and Pausing

I obtained the total number of syllables in each utterance using a dictionary with

syllable markings [161]. I calculated the speaking rate in syllables per second for

41

CHAPTER 3. SPOKEN CORRECTIONS

20%

40%

60%

80%

100%

1.0 3.0 5.0 7.0 9.0

C
um

ul
at

iv
e

%

Speaking rate (syllables/second)

err1-4
init
pre

Figure 3.3: Cumulative distribution of speaking rate on pre, init and err1-4 utter-

ances (for all participants). Dotted gray lines denote two-sigma error bars.

each utterance, removing starting and ending silence using the forced alignment.

As shown in figure 3.3, even before errors occurred on a particular sentence, the

init utterances were slowed in comparison to the pre utterances. A further

speaking rate reduction was seen on the err1-4 error corrections. I found speak-

ing rate did not differ significantly as users repeated the same correction in the

err1, err2, err3 and err4 utterances.

I also calculated the amount of inter-word silence in each utterance by sum-

ming the durations of all silence phones which appeared between words in the

forced alignment. This showed increasing amounts of inter-word silence in the

init and err1-4 utterances (figure 3.4).

3.3.3 Pitch, Intensity, and Formant Frequencies

I also calculated cumulative distributions for the following:

• Pitch - Minimum, maximum, mean and slope of pitch.

• Intensity - Minimum, maximum, and mean of intensity.

• Formants - Mean of the first five formants (F1–F5).

42

3.3 Analyzing Speech During Corrections

20%

40%

60%

80%

100%

0.00 0.01 0.10

C
um

ul
at

iv
e

%

Inter-word pauses (seconds/word)

pre
init

err1-4

Figure 3.4: Cumulative distribution of inter-word pausing on pre, init and err1-4

utterances. Dotted gray lines denote two-sigma error bars. Note the x-axis is on a log

scale.

For brevity, the distributions in which I found significant differences are sum-

marized here by their quartiles (figure 3.5). The main effects I saw for error

correction attempts (err1-4) were a widening in the range of both pitch and in-

tensity (lower minima and higher maxima). I also saw a decrease in the average

frequencies of the first three formants (F1–F3). The differences reported were

significant in the sense that the two-sigma error bars of the cumulative distribu-

tions were non-overlapping. See appendix B.2 for graphs of all the distributions

I analyzed.

3.3.4 Correction Strategies

Aside from the initial Dragon instructional text, no intervention or advice was

given to the participants on how to speak during the experiment. I observed that

participants employed a wide variety of strategies in their efforts to obtain correct

recognition. Some participants consistently hyperarticulated corrections while

others spoke normally throughout. Some explored different strategies, changing

between normal, hyperarticulated and hypoarticulated (reduced) speaking styles.

43

CHAPTER 3. SPOKEN CORRECTIONS

70 dB 85 dB

Intensity max
pre < init, err1-4

50 dB 65 dB

Intensity mean
err1-4 < pre, init

20 dB 35 dB

Intensity min
err1-4 < pre, init

2600 Hz 3125 Hz

F3 mean
pre, init < err1-4

1600 Hz 2125 Hz

F2 mean
pre, init < err1-4

600 Hz 1125 Hz

F1 mean
pre, init < err1-4

350 Hz 540 Hz

Pitch max
pre < init < err1-4

0 Hz 190 Hz

Pitch min
err1-4 < pre, init

2.0 5.3 syl/sec

Speaking rate
err1-4 < init < pre

pre
init

err1-4

Figure 3.5: On the left, the significant acoustic differences between the pre, init,

and err1-4 utterances are listed. On the right, the lower and upper quartiles of each

utterance type is shown with a central line denoting the median.

44

3.4 Recognition Experiments

normal

some

strong

2.0 2.5 3.0 3.5 4.0 4.5 5.0

H
yp

er
ar

tic
ul

at
io

n

Speaking rate (syllables/second)

Figure 3.6: Speaking rate and judged hyperarticulation on spoken corrections (err1-4).

Each dot represents a different participant. The dotted lines show the one-sigma vari-

ability within that participant’s utterances.

A number also tried isolated speech, inserting long pauses between every word.

The spectrum of participants’ correction strategies is depicted in figure 3.6. As

expected, the quantitative measure of speaking rate and the qualitative measure

of judged hyperarticulation were correlated.

3.4 Recognition Experiments

In this section, I conduct recognition experiments on the audio from my cor-

pus. The goal was to ascertain what effect the speech changes observed during

corrections had on recognition accuracy.

3.4.1 Recognizer Setup

For these experiments, I used two commercial speech recognizers and one research

recognizer:

45

CHAPTER 3. SPOKEN CORRECTIONS

• Microsoft - I used the recognizer provided in the Microsoft Speech SDK

v5.1 [106]. I accessed the engine via the Speech Application Programming

Interface (SAPI). I set the Microsoft engine to its maximum accuracy set-

ting, disabled background adaptation, and used an untrained user profile.

• Dragon - I used Nuance Dragon NaturallySpeaking v8.1 [111]. I accessed

the engine via the C++ SDK. Except where noted, I set Dragon to its

default accuracy setting and used an untrained user profile.

• HTK - I used the research recognizer HTK v3.3 [169; 170]. The details of

the HTK setup are described below.

To ensure Microsoft and Dragon were not doing unsupervised adaptation dur-

ing the experiment, I performed recognition one utterance at a time. I started

each engine with an untrained user profile, performed recognition on a single ut-

terance, then shutdown the engine (without updating the user profile). For the

Microsoft recognizer, it was also necessary to replace the user profile files with

copies made before the start of recognition. This procedure resulted in Microsoft

and Dragon returning identical recognition results regardless of the order of ut-

terances. I report error bars using a one standard error (σse) confidence interval

obtained via per-utterance bootstrap resampling [17].

I trained the HTK acoustic model following my HTK training recipe [147]. I

parameterized audio into a 39-dimensional feature vector consisting of 12 Mel-

frequency cepstral coefficients plus the 0th cepstral, deltas and delta deltas, nor-

malized using cepstral mean subtraction. I used the CMU phone set without

stress markings (39 phones plus silence). Each phone HMM had three output

states and a left-to-right topology with self-loops. For a pronunciation dictio-

nary, I used the CMU dictionary [25].

I trained initial monophone models using the TIMIT corpus [58]. I then

trained cross-word triphones using the SI-284 training subset (66 hours) of the

WSJ0 [57] and WSJ1 [5] corpora. I used 16 continuous Gaussians per output

state and 32 Gaussians for silence states. All Gaussians used diagonal covariance

matrices. Output states were tied using a phonetic decision tree. This yielded

46

3.4 Recognition Experiments

Acoustic model training WSJ0 si et 05 WSJ1 si et h2

(Nov’92) (Nov’93)

My recipe 5.25 7.36

Woodland et al. 5.14 6.91

Table 3.1: Word error rates on two test sets using my acoustic model training

recipe [147] and the results reported in Woodland et al. [165].

a speaker-independent, gender-independent model with approximately 7400 tied-

states and 9.3 million parameters.

Table 3.1 shows the error rates of my trained acoustic model compared to

the error rates reported in Woodland et al. [165]. Both our experiments used

the SI-284 acoustic training set, the standard WSJ 5K bigram language model,

cross-word triphones, and a similar numbers of tied-states. We both used WSJ0

si et 05 as a development test set and WSJ1 si et h2 as an evaluation test set.

My models performed slightly worse than Woodland et al. A possible reason for

the difference is that Woodland et al. trained gender-dependent acoustic models

while I trained only a gender-independent acoustic model.

I trained bigram and trigram language models on newswire text from the

CSR-III text corpus [64] (222M words). The language model’s vocabulary was

the top 64K words appearing in the corpus and used non-verbalized punctua-

tion. The language model was trained with interpolated modified Kneser-Ney

smoothing and no count cutoffs. I entropy-pruned [137] the language model us-

ing SRILM [138] and a threshold of 1× 10−8. This resulted in a language model

with 8.7M bigrams and 12.4M trigrams. I used the HDecode decoder from HTK

v3.4 [167; 168]. Recognition used the bigram language model, expanding and

rescoring the bigram word lattices with the trigram language model.

3.4.2 Baseline Recognition

Before analyzing recognition performance on the spoken corrections in my cor-

pus, I first wanted to test how well the three different recognizers performed on

47

CHAPTER 3. SPOKEN CORRECTIONS

Recognizer ×RT WER ± σse

Microsoft 0.5 32.8 ± 1.6

Dragon 0.4 31.6 ± 1.4

HTK 5.2 15.6 ± 0.8

0 5 10 15 20 25 30 35

Table 3.2: Real-time factor (×RT) and word error rate (WER) of the three recognizers

on the San Jose Mercury sentences in the WSJ1 si dt s2 test set.

a standard acoustic test set consisting of naturally-read full sentences. To my

knowledge, no one has compared recognition performance of the Dragon, Mi-

crosoft and HTK recognizers on a standard test set. I ran this experiment using

the San Jose Mercury newswire sentences from the WSJ1 si dt s2 test set (207

sentences). This is the same source from which I drew the text for my partic-

ipants’ sentences. Using the same sentences also allowed me to check how well

my recordings compared to the recording collected in the original WSJ test set. I

found Dragon did not work well with the low volume audio in the original test set

utterances. I normalized the volume in the utterances to 30% root mean square

(RMS) using Vox Studio v3.0 [3]. I used the volume normalized audio files for

the experiments with all three recognizers.

Table 3.2 shows the real-time factor (how long recognition took compared

to the length of the audio) and the word error rate (WER). Results were on a

2.2 GHz computer. While HTK took longer for recognition, it provided much

better accuracy. This may reflect the close match between the WSJ test set and

the WSJ data that trained the HTK acoustic and language models.

Table 3.3 shows the WER on the subset of the WSJ1 si dt s2 test set that

I recorded from my participants. Microsoft and HTK had similar WER on the

original corpus versus the pre utterances recorded by my participants (Microsoft

33% versus 30%, HTK 16% versus 17%). Dragon performed worse on the original

corpus compared to the pre utterances (32% versus 23%).

48

3.4 Recognition Experiments

Recognizer Utt type WER ±σse

Microsoft pre 29.5 ± 0.8

Microsoft init 29.0 ± 0.7

Dragon pre 23.1 ± 0.7

Dragon init 20.7 ± 0.6

HTK pre 17.3 ± 0.5

HTK init 16.2 ± 0.5

0 5 10 15 20 25 30 35

Table 3.3: WER on normally read pre utterances and somewhat hyperarticulated init

utterances.

pre init err1 err2 err3

Judged score † 0.17 0.73 0.99 0.89 0.96

Syllables/sec 4.30 3.78 3.57 3.62 3.60

Pause sec/word 0.006 0.016 0.023 0.025 0.025

Table 3.4: Three measures of hyperarticulation on utterances where corrections where

complete sentences. † Hyperarticulation was judged on a three point scale: 0 = normal,

1 = somewhat hyperarticulate, 2 = strongly hyperarticulate.

3.4.3 Whole Sentence Recognition

I compared the initial reading of a sentence (pre) to the second reading (init)

(960 utterances per type). I found participants’ utterances increased in length by

18% on average in the init reading. Participants also tended to hyperarticulate

more on init utterances with the judged hyperarticulation score increasing from

0.09 to 0.58. Despite the increased hyperarticulation, all three recognizers showed

reduced WER on the init utterances compared to the pre utterances (table 3.3).

For eight sentences, after the two initial readings (pre, init), three full-

sentence error corrections (err1-3) were recorded (8 sentences × 24 speakers =

192 utterances per type). As shown in table 3.4, both quantitative and qualitative

49

CHAPTER 3. SPOKEN CORRECTIONS

 15

 20

 25

 30

 35

pre init err1 err2 err3

R
ec

og
ni

tio
n

W
E

R
 (%

)

Utterance type

Microsoft
Dragon

HTK

Figure 3.7: WER on sentences where corrections involved reading the whole sentence

repeatedly.

measures of hyperarticulation increased on init and err1-3 utterances. How-

ever, this did not adversely affect recognition. Error rates for all three recognizers

remained similar or decreased on repeated whole sentence utterances (figure 3.7).

3.4.4 Partial Sentence Corrections

For 12 sentences, after the two initial readings of the full sentence (pre, init),

three word- or partial-sentence corrections (err1-3) were recorded (288 utter-

ances per type). The word or partial-sentence corrections showed increased hy-

perarticulation with the judged score increasing from 0.08 on pre to 0.80 on

err1-3. The err1-3 utterances also had a 29% slower speaking rate.

The error rate of each recognizer on the corresponding fragments of the pre

and init utterances was found by aligning the full sentence recognition results

with the reference transcripts. Errors increased for the word and partial-sentence

corrections in isolation as compared to when carried within a full sentence (fig-

ure 3.8). Note that no surrounding context (i.e. words appearing before the

correction location) was used during err1-3 recognition. This made the recog-

nizer’s job harder than strictly necessary. Despite this, Dragon coped reasonably

50

3.4 Recognition Experiments

 20

 25

 30

 35

 40

 45

 50

 55

pre init err1 err2 err3

R
ec

og
ni

tio
n

W
E

R
 (%

)

Utterance type

Microsoft
HTK

Dragon

Figure 3.8: WER on corrections that were single-words or partial-sentences. The error

rates reported for pre and init were on the corresponding partial part of the result

obtained recognizing the full pre and init sentences.

well while HTK degraded markedly, showing a large 48% relative increase in

WER. Dragon’s accuracy on short corrections suggest (as might be expected) it

has been specifically designed to handle spoken corrections. Perhaps Dragon has

short correction-like examples in its acoustic or language model training data.

3.4.5 Matched Utterance Pairs

I compared the WER of pairs of utterances where each pair came from the

same speaker and contained identical lexical content. I paired utterances which

were judged normally-spoken with utterances judged somewhat- or strongly-

hyperarticulated. Microsoft and HTK did slightly worse recognizing the speech

judged hyperarticulate while Dragon did slightly better (figure 3.9a, 698 utterance

pairs). I found similar results when I compared normally-spoken and strongly-

hyperarticulated utterances (figure 3.9b, 217 utterance pairs) and when I com-

pared the shortest and longest utterances (figure 3.9c, 1666 utterance pairs).

51

CHAPTER 3. SPOKEN CORRECTIONS

-3

-2

-1

0

1

2

3
W

E
R

 d
iff

er
en

ce
 (%

)

(a)
normal

vs
somewhat/strong

normal
better

hyper
better

(b)
normal

vs
strong

normal
better

hyper
better

(c)
shortest

vs
longest

short
better

long
better

Microsoft
Dragon

HTK

Figure 3.9: Difference in WER between participants’ normal and hyperarticulate ut-

terances. I paired utterances based on judged hyperarticulation (a and b) and overall

utterance length (c).

3.4.6 Effect of Dragon Adaptation

To this point, I have used speaker-independent acoustic models for all recognizers.

In real-world usage, users would usually adapt the recognizer to their voice. I

wanted to see if adaptation had any influence on the recognition accuracy of

spoken corrections.

During my experiment, I had participants complete Dragon’s “Talking to your

computer” enrollment session. This provided a speaker-dependent model for each

participant. I ran experiments to investigate how effective Dragon adaptation

was. In addition to adaptation, I also tested Dragon’s accuracy setting. This

setting controls the trade-off between recognition accuracy and the time it takes

to return recognition results.

3.4.6.1 Per Participant Adaptation Results

First, I validated that adaptation improved recognition accuracy on the normally

spoken (pre) utterances. As shown in figure 3.10, accuracy did indeed improve

52

3.4 Recognition Experiments

 0

 10

 20

 30

 40

 50

 60

1 3 5 7 9 11 13 15 17 19 21 23

R
ec

og
ni

tio
n

W
E

R
 (%

)

Participant

SI
SD

Figure 3.10: WER of each participant on normally spoken pre sentences. I tested

each participant using a speaker-independent (SI) and a speaker-dependent (SD) model

(both using Dragon’s default accuracy setting).

for all participants. Some participants experienced very large gains, for example

participant 13 went from 57% WER to 13%.

3.4.6.2 Adaptation and Hyperarticulate Speech

Next, I tested what effect adaptation had on my set of repeated full sentence

corrections. As expected, the speaker-dependent models substantially reduced

WER for every utterance type (figure 3.11). Averaged over all utterance types,

WER was reduced from 22% to 11% at the default accuracy setting. Using the

maximum accuracy setting further reduced WER to 10%.

Across all Dragon configurations tested, the full sentence corrections (err1-3)

always had a lower WER compared with the initial (pre) reading. Looking at

the trends in figure 3.11, the WER of the adapted models leveled out or increased

slightly as corrections were repeated (err1-3). The unadapted model tended to

have lower WER as corrections were repeated. In all configurations, Dragon was

robust to the hyperarticulate speech typical of spoken corrections.

53

CHAPTER 3. SPOKEN CORRECTIONS

 5

 10

 15

 20

 25

 30

pre init err1 err2 err3

R
ec

og
ni

tio
n

W
E

R
 (%

)

Utterance type

SI, def accuracy
SD, def accuracy

SD, max accuracy

Figure 3.11: WER on sentences in which participants read an entire sentence repeat-

edly. Recognition used Dragon with either a speaker-independent (SI) or a speaker-

dependent (SD) model. I also varied Dragon’s accuracy setting between the default and

the maximum setting.

3.5 Improving Recognition of Short Corrections

For all three recognizers, the WER on short utterances consisting of single-word

or partial-sentence corrections (figure 3.8) was higher than the WER on full sen-

tences (figure 3.7). One explanation for this is that I chose corrections to be in

locations that would be difficult for a recognizer. For example, I chose locations

that included proper names or uncommon words (e.g. “but Ingram added” and

“the eccentric old hermit”). I also chose locations in which I observed recogni-

tion errors on my own audio. Additionally, the short corrections were recognized

without providing surrounding context information to the language model. In

this section, I look at improving the accuracy on these short correction utter-

ances using the HTK recognizer.

54

3.5 Improving Recognition of Short Corrections

3.5.1 Improvement Method

There are two main methods available for improving recognition of short correc-

tions. The first is to improve the language model. An obvious way to improve

the language model is to use the context surrounding the correction to bias recog-

nition to things consistent with the surrounding context. This has been studied

before and was shown to be effective [140].

The second method is to improve the acoustic model. This could be done

by tuning an acoustic model for the hyperarticulate speech typical of correc-

tions. The model might also be tuned for the speech typical of single-word or

partial-sentence corrections. It may be necessary to tune the model to short,

partial-sentence corrections as other researchers have found a model trained on

continuous speech does not perform well on isolated words [10].

Given the unique nature of the corpus I collected, as well as the acoustic dif-

ferences seen in my participants’ corrections, I focused on improving the acoustic

model.

3.5.2 Experimental Setup

I used speaker adaptation techniques to see if the WSJ acoustic model could be

adapted to better recognize single word or partial-sentence corrections. I did

this in a supervised, speaker-independent fashion. I created a correction-specific

acoustic model using audio with known transcriptions from a set of training

speakers. This adapted model was used to recognize corrections from the test

set speakers.

As I needed precise control of the recognition process, the experiments in this

section used only the HTK recognizer. For details of the HTK setup, see section

3.4.1. I split my corpus into a training set of 16 speakers and a test set of 8

speakers. Both sets were gender-balanced.

55

CHAPTER 3. SPOKEN CORRECTIONS

Training set Training set

(16 speakers x 12 sentences)(16 speakers x 12 sentences)

Test set Test set

(8 speakers x 12 sentences)(8 speakers x 12 sentences)

err1err1--44 (N=280(N=280))

prepre, adapt, adapt (N=870(N=870))

err1err1--4 4 ((N=480)N=480)

Correction +Correction +

Baseline 100%Baseline 100%

modelmodel

OriginalOriginal

WSJWSJ

modelmodel

CorrectionCorrection

modelmodel
Baseline 25%Baseline 25%

modelmodel
Baseline 50%Baseline 50%

modelmodel
Baseline 75%Baseline 75%

modelmodel
Baseline 100%Baseline 100%

modelmodel

Figure 3.12: The corpus was split into training and test sets for the adaptation ex-

periment. The normally spoken pre and adapt utterances were used to create baseline

models. The err1-4 utterances were used to create correction-specific models.

3.5.3 Adaptation Data

I used 24 of the 40 sentence tasks that had single word or partial-sentence cor-

rections. This excluded sentences with whole-sentence corrections and sentences

with no corrections.

As shown in figure 3.12, the training set consisted of two parts. The first nor-

mal speech part had the Dragon adaptation utterances (adapt) plus the pre ut-

terances (870 utterances). The correction speech part had the err1-4 utterances

(480 utterances). I did not include the init utterances as they were neither true

corrections attempts nor naturally read initial dictations. The pre and err1-4

utterances were taken from 12 of the 24 available sentence tasks.

The test set consisted entirely of err1-4 utterances (280 utterances). These

utterances came from 12 of the sentence tasks, but did not overlap with the

sentences chosen for the training set. This ensured that there was no overlap in

the sentence texts between the training and test utterances.

56

3.5 Improving Recognition of Short Corrections

3.5.4 Adaptation Procedure

I trained a set of baseline and correction-specific acoustic models (figure 3.12).

The baseline models were adapted on increasing amounts (25%–100%) of the

pre and adapt utterances. This set of baseline models provided a check on how

much adaptation gain was the result of adapting to the microphone and acoustic

environment. A correction acoustic model was adapted on just the err1-4 utter-

ances. I also adapted a model using 100% of the pre and adapt utterances plus

the err1-4 utterances.

I adapted the original WSJ model’s means and variances using maximum like-

lihood linear regression (MLLR) [96]. MLLR adaptation used an automatically

derived 16-class regression tree.

3.5.5 Recognition Results

On the err1-4 utterances in my test set, the original WSJ acoustic model had

a WER of 48.6% (figure 3.13). Using 25% of the normally spoken training data,

a substantial reduction of 5.4% absolute (11% relative) was made. Increasing

the amount of normally spoken training data did not further reduce WER. Thus

there was a gain from adapting to the microphone and acoustic environment. But

this gain was quickly realized with a small amount of adaptation data.

The model adapted on the correction speech improved accuracy even further,

reducing WER by 11.2% absolute (26% relative) compared to the original WSJ

model. This was an additional 5.8% absolute (13% relative) better than the

models adapted on the normally spoken speech.

The model adapted on the normally spoken and correction speech did slightly

worse than the model adapted on just the correction speech (39.8% WER versus

37.4%). This may have resulted from the normally spoken full sentences (pre

and adapt) hindering adaptation to the correction utterances (err1-4).

57

CHAPTER 3. SPOKEN CORRECTIONS

 30

 35

 40

 45

 50

 55

WSJ base
25

base
50

base
75

base
100

correct correct
base
100

R
e
c
o
g
n
it
io

n
 W

E
R

 (
%

)

Acoustic model

Figure 3.13: WER of speaker-independent acoustic models on spoken corrections. The

“base” models were adapted on increasing amounts of normally spoken utterances. The

“correct” model was adapted only on spoken corrections. The “correct+base100” model

was adapted on both spoken corrections and normal utterances

3.6 Related Work

In this section, I review prior work related to speech changes during corrections,

recognition of hyperarticulate speech, and the use of spoken corrections by dic-

tation users.

There are numerous studies describing speech changes during corrections. I

will highlight just a few. Levow [97] compared acoustic properties of 300 pairs of

original and repeat correction utterances collected from a telephone dialog system.

Each utterance pair was from the same speaker and contained the identical lexical

content. Similar to my findings, repeat utterances were found to have increased

duration, pausing, and changes in pitch. A decision tree using duration, pitch

and amplitude features was able to classify 77% of utterances correctly as original

or repeat. While Levow indicates her results “suggest different error rates after

correct and after erroneous recognitions are due to a change in speaking style”,

no recognition experiments were conducted to confirm this.

In Oviatt et al. [115], 20 participants used a tablet PC to interact with a di-

58

3.6 Related Work

alog system for conference registration and car rental. Similar to my study, they

simulated recognition and displayed fake recognition errors. They analyzed the

original and first repeat utterances for acoustic differences. Similar to my find-

ings, they found participants increased their utterance duration, pause duration,

number of pauses, and pitch minimum. While they speculate hyperarticulate

speech may degrade performance, no recognition experiments were reported. A

further study by Oviatt et al. [117] provided additional results showing that par-

ticipants changed their speaking rate and pausing during correction attempts,

but did not appreciably change their pitch or amplitude.

In a series of studies, Hirschberg, Litman and Swerts [68; 69; 70; 71] analyzed

utterances from a dialog system for train reservations and a telephone-based di-

alog system for conference registration. They compared acoustic properties of

utterances correctly and incorrectly recognized by the system. Utterances incor-

rectly recognized were higher in pitch, louder, and longer in duration. Unlike my

hyperarticulate utterances, their misrecognitions had less internal silence. Utter-

ances which they judged as hyperarticulate were found to be more likely to be

misrecognized. These findings could suggest there is a basis for hyperarticula-

tion causing increased recognition errors. However, I urge caution as there could

be other explanations for the correlation. For example, maybe loud non-speech

noises in utterances were causing misrecognitions and these noises in turn drove

the acoustic changes seen in the misrecognized utterances. Choularton [31] also

studied acoustic differences in misrecognized utterances and found correlations.

Choularton also cautions that these correlations could be due to things besides

hyperarticulation such as: pronunciation variation, people with colds, dysarthric

speech, children’s speech, or noise in the signal.

One study that actually tested recognition accuracy on hyperarticulate speech

was Shriberg et al. [131]. In this study, they had participants use a dialog system

for airline reservations. Utterances were judged on a three-point scale of hyperar-

ticulation. When they performed recognition on utterances from 13 participants,

strongly hyperarticulated utterances had a statistically significantly higher WER

than normally spoken utterances. During the experiment, half the participants

were given the instruction to speak naturally and not to over-enunciate, while the

59

CHAPTER 3. SPOKEN CORRECTIONS

other half did not receive this instruction. Participants receiving the instruction

showed a decrease in judged hyperarticulation and a lower WER, but the WER

difference was not statistically significant (18% WER for those given the instruc-

tion, 23% for the rest). In further analysis in Wade et al. [155], they showed that

for 20 participants, utterances judged normally spoken had a statistically signifi-

cantly lower WER than utterances judged somewhat or strongly hyperarticulated

(14% WER normal versus 25% hyperarticulated).

Another study that tested recognition accuracy was Bell and Gustafson [13].

In this study, they analyzed utterances collected using a Swedish spoken dialog

system. They used 200 original utterances and 252 lexically identical repetitions.

Similar to my findings, repetition utterances showed an increase in duration and

pausing with a decrease in speaking rate. They scored utterances according to

their degree of articulation (hypoarticulated, normal, or hyperarticulated). In

a recognition experiment, they found hypoarticulated utterance had the highest

sentence error rate of 69%. They found normal utterances had a sentence error

rate of 40% and hyperarticulated utterances had a sentence error rate of 45%

(error rates estimated from figure 6 in [13]).

Soltau and Waibel [133] found that recognition accuracy suffered on isolated,

hyperarticulated words. In this study, they elicited normal and hyperarticulate

isolated words in German from 81 participants. They adapted a continuous speech

recognizer using the participants’ normally spoken isolated words. On 20 unseen

test speakers, they compared recognition accuracy on normal and hyperarticulate

words. While a few participants (2 out of 20) saw a 7% absolute decrease in

WER on hyperarticulate speech, the majority (12 out of 20) saw an increase of

11% absolute. Further experiments in [135] showed the initial recognizer trained

on normally spoken words had a WER of 20% on normal words and 25% on

hyperarticulated words. Soltau and Waibel also collected an English corpus of

isolated words [134]. Similar to their German Corpus, they report the English

corpus had a lower WER on normal words than on hyperarticulated words (23%

WER normal versus 30% hyperarticulated).

In contrast to other studies, Stent et al. [136] showed that hyperarticulate

60

3.6 Related Work

speech actually improved accuracy. In this study, 16 participants composed re-

sponses to a series of 66 questions. While participants thought the computer

was recognizing their responses, in fact an unseen human was transcribing their

speech. Preplanned recognition errors were inserted at fixed locations in the dia-

log. They found participants slowed their speaking rate after simulated errors and

that this slowing persisted for a period of time after the error (despite subsequent

correct recognitions). This “memory effect” of past errors causing persisting hy-

perarticulation is similar to what I saw on my participants’ init utterances.

Stent et al. went on to compare recognition accuracy on 387 pairs of original and

repair (hyperarticulated) utterances. They used the Sphinx-3 recognizer trained

on either broadcast news data or spoken dialog data. They tested using word

list, unigram, bigram and trigram language models. Across all language models

and both training sets, the repair utterances always had a lower WER. They also

tested grammar-based recognition using a “state-of-the-art speaker-independent

commercial speech recognizer”. The grammar-based recognizer had the same

average WER for original and repair utterances.

In the context of a dictation application, recognition of spoken corrections

is only important if users are actually correcting errors using this strategy. A

number of studies have looked at how dictation users correct errors. In a study

by Karat et al. [80], 24 participants used commercial recognizers from Dragon,

IBM, and L&H. In the speech condition, participants dictated text and then cor-

rected any errors. Participants could use either speech or the keyboard and mouse

to correct errors. In 61% of correction episodes, participants either selected or

deleted text and then reentered it. Unfortunately, they do not provide data on

how often users used speech correction versus keyboard correction. In a ques-

tionnaire, participants indicated a high-level of dissatisfaction with recognition

accuracy and the correction process.

Further details about the Karat et al. study [80] appear in Halverson et al. [66].

Similar to my findings, they found spoken corrections were particularly hard to

recognize with a WER of 53%. Despite the low accuracy on spoken corrections,

their participants tended to be “fixated on re-dictation”, trying repeatedly to

61

CHAPTER 3. SPOKEN CORRECTIONS

obtain correct recognition on a particular word. 50% of the time, participants

tried to re-dictate a word three times, 25% of the time they tried four times.

Horstmann [86] presents a study in which 24 expert dictation users with phys-

ical disabilities used speech recognition to enter text and perform command-and-

control tasks. All participants had substantial (6+ months) of experience using

their particular commercial recognizer (primarily Dragon). When correcting er-

rors, participants could use a correction dialog which allowed selection of alternate

hypotheses, spelling by voice, or spelling by keyboard. Horstmann’s participants

preferred the recognizer’s correction dialog, using it for 38% of corrections. This

level of usage of the correction dialog was much higher than the 8% seen of novices

in Karat’s study [80]. The increased correction dialog usage might be because

expert users had learned to avoid error-prone correction methods such as respeak-

ing. It could also be that the users were avoiding keyboard-based corrections due

to physical inability or discomfort. Despite preferring to use the correction dialog,

Horstmann’s participants still used spoken corrections in 25% of their correction

episodes. This demonstrates that even for experienced users, spoken corrections

are an important part of the correction process.

3.7 Conclusions

In this chapter, I described a corpus I collected using a dictation-style interface.

Users first spoke full sentences and then they spoke corrections based on a series

of simulated recognition errors. Using this corpus, I showed participants had

a strong tendency to change their speech. Compared to naturally read speech,

speech during error corrections showed a slowed speaking rate, increased inter-

word pausing, expanded pitch range, expanded intensity range, and increased

formant frequencies. I found human-judged levels of hyperarticulation increased

during error correction episodes. I also found judged hyperarticulation increased

even before an error had occurred, possibly as a response to errors encountered

on previous sentences.

62

3.7 Conclusions

While I had expected an increase in recognition errors on hyperarticulated

speech, my experiments showed otherwise. Despite increasing levels of hyperar-

ticulation on repeated full sentences, recognition error rates remained similar or

even decreased. Within-subject pairings of word, partial sentence, or full sen-

tence utterances did show some differences between normal and hyperarticulate

speech. But these differences were small and Dragon actually showed improved

recognition on hyperarticulate speech. It seems that the exact influence of hyper-

articulation on recognition accuracy is variable. Most prior work reports increased

errors on hyperarticulate speech in the domain of spoken dialog systems [131; 155]

and isolated word recognition [133; 134; 135]. However, one prior study showed

decreased errors on hyperarticulate sentences [136]. Perhaps the exact nature of

the task and the recognizer used influences whether hyperarticulation is helpful

or harmful.

I found recognition of word or partial-sentence corrections was particularly

hard. I investigated improving recognition on these types of corrections by adapt-

ing the acoustic model to short corrections. I found this adaptation reduced the

word error rate by 13% relative.

63

CHAPTER 3. SPOKEN CORRECTIONS

64

Chapter 4

Speech Dasher

4.1 Overview

Speech offers a potentially very fast way to enter text into the computer. Users

have been measured dictating text to a computer at 102 (uncorrected) words

per minute (wpm) [93]. But speech recognition isn’t perfect and mistakes need

to be corrected. Previous research has shown correction time dominates the

entry process and significantly slows entry rates (e.g. 14 wpm [80], 17 wpm [86],

17 wpm [93]). A further problem is that correction interfaces often assume the

user can control a non-speech input device such as a mouse, keyboard, or stylus.

This makes correction difficult for people who have limited or non-existent use of

their hands.

In this chapter, I investigate Speech Dasher, a novel correction interface for

speech recognition. Speech Dasher works by allowing the user to easily navigate

the rich hypothesis space available to the speech recognizer. I will show that

expert users were able to use Speech Dasher to write at 40 (corrected) words per

minute. They did this despite a recognition word error rate of 22%. Furthermore,

they did this by using only speech and the direction of their gaze (obtained via a

gaze tracker).

Speech Dasher is built upon the existing text entry interface Dasher [157]. In

65

CHAPTER 4. SPEECH DASHER

Dasher, users write by zooming through a world of boxes. As shown in figure 4.1,

Dasher’s main navigation display consists of a collection of nested boxes with

each box labeled by a letter. The vertical size of each letter’s box is proportional

to the letter’s probability under a letter-based language model. As more letters

are written, Dasher makes stronger and stronger predictions about the upcoming

letter. This enables the user to write common words quickly. All letters appear

inside every box in alphabetical order, from top to bottom. Even if the user’s

desired text is not well predicted by the language model, the text can still be

written by navigating to the correct location in the alphabetical ordering.

Dasher can be controlled by any type of pointing device. The rate of zooming

is controlled by the horizontal position of the mouse. If the user points to the right

of the screen midpoint (the vertical line in figure 4.1), Dasher zooms in on letters.

The speed of zooming is controlled by how close the mouse is to the right side.

As a letter box passes through the midpoint, that box’s letter is outputted. The

maximum rate of zooming is controlled by a user selected speed setting. If the

user makes a mistake, pointing to the left side of the screen reverses the zooming

direction and allows previously written letters to be erased. After an hour of

practice, users can write at 20 words per minute (wpm) with a mouse [157] or

16–26 wpm using a gaze tracker [158].

In this chapter, I augment Dasher by adding information from a speech rec-

ognizer. This enables users to write faster than using Dasher alone. In Speech

Dasher, users navigate as in normal Dasher, but can quickly zoom through com-

plete words and parts of sentences. Even if the recognition error rate is very high,

Speech Dasher allows easy correction via a letter-by-letter spelling of the desired

word.

This chapter is structured as follows. First, I describe the principles that

guided my design of Speech Dasher. Second, I provide an overview of the Speech

Dasher interface. Third, I describe the probability model that Speech Dasher

uses to navigate the recognition hypothesis space. Fourth, I describe results of a

user study in which participants used Speech Dasher to write with a gaze tracker.

66

4.2 Design Principles

Figure 4.1: The standard Dasher interface after the user has written “april in”. The

dashed red line shows the path a user might take to write “april in paris”.

4.1.1 Publication Note

The work presented in this chapter extends the work in my M.Phil thesis “Ef-

ficient Computer Interfaces Using Continuous Gestures, Language Models, and

Speech” [146]. I repeat from [146] the basic formulation of the lattice probabil-

ity model (sections 4.4.2 and 4.4.3). The model has been extended in numerous

ways in this work, including the use of a fully probabilistic recognition lattice,

optimizing the model and display for word-level predictions, and adding a special

“escape” box.

4.2 Design Principles

In this section, I discuss some of the key principles that guided my design of

Speech Dasher. These principles leveraged existing results in the literature as

well as user feedback I obtained from early prototypes.

67

CHAPTER 4. SPEECH DASHER

4.2.1 Visualize the Hypothesis Space

Standard speech recognition interfaces like Nuance Dragon NaturallySpeaking

first present only the recognizer’s top hypothesis. In order to see other possibil-

ities, the user highlights part of the top hypothesis and issues a command. But

doing this only exposes a small number of other hypotheses. The recognizer has

a much larger set of hypotheses within the lattice generated during the speech

recognition search. I designed Speech Dasher to allow the user to navigate the

entire hypothesis space of the recognizer. By exposing this space to the user, the

user can easily and efficiently arrive at one of the recognizer’s alternative hypoth-

esis. This allows the user to correct a large number of errors without resorting to

entering the information from scratch.

4.2.2 Avoid Cascading Errors

Previous research has shown that using speech to correct speech recognition errors

can lead to time-consuming and frustrating cascades of errors [66; 80]. I designed

Speech Dasher so that correction could be achieved via transparent mechanisms

that did not rely on further use of error-prone recognition technologies. As I will

describe shortly, I added a highly visible “escape” box. By going to the escape

box, the user can expect a consistent correction experience similar to conventional

Dasher.

4.2.3 Efficient when Correct

Given reasonably accurate speech recognition, the best recognition hypothesis will

often be completely, or nearly completely, correct. A design choice was whether

the user should proofread the best recognition result as normal, static text, or

whether they should proofread the text by zooming in Dasher. In my opinion,

proofreading static text requires less time and mental effort than proofreading the

same text in Dasher. For this reason, Speech Dasher first presents the best hy-

68

4.3 Interface Description

pothesis as simple text. The user can then choose to accept the result, selectively

correct portions of the result, or correct the entire sentence.

This also makes it easier to imagine how Speech Dasher might integrate into

a real-world text creation environment. A user could add text to a document by

speaking and having the best recognition added to the document (as in conven-

tional dictation interfaces like Dragon). When an error needs to be corrected,

Speech Dasher would be invoked by selecting the desired text and issuing a com-

mand. The user could then correct just the erroneous portion of the text using

Speech Dasher. In this way, the user could focus on their primary task of doc-

ument creation and not devote attention or screen real estate to Speech Dasher

until it was actually needed.

4.2.4 Present Entire Words

While Dasher is normally letter-based, it can in principle predict any type of

lexical unit. I discovered in early prototype versions that users disliked a letter-

by-letter approach to correcting speech results. I also found that allowing the user

too many choices made navigation difficult. This was because all but the most

probable choices tended to be small in the Dasher display. This made it difficult

for the user to successfully navigate to the less probable choices. I updated my

design to present results at the word level. This allows users to zoom through the

majority of their desired sentence, escaping out to letter-by-letter spelling only

when the model’s most likely predictions are incorrect.

4.3 Interface Description

In this section, I provide an overview of how the Speech Dasher interface works

from a user perspective. Figure 4.2 shows the Speech Dasher interface. The main

area of the window is the Dasher display. It displays words and letters that are

used to correct the recognition result. The buttons along the bottom row allow

69

CHAPTER 4. SPEECH DASHER

Figure 4.2: The Speech Dasher interface. The user is currently midway through the

sentence “i must go down to the seas again to the lonely sea and the sky”. The user

must now choose between the word “in” or “to”.

control of the microphone and allow the current result to be cleared. The text

box above the buttons displays the current text output of the correction process.

4.3.1 Basic Navigation

Writing in Speech Dasher is done by zooming through the alternative recognition

hypotheses in the results returned by the recognizer. This is best illustrated by

an example. Figure 4.2 shows a user correcting the sentence “I must go down to

the seas again to the lonely sea and the sky”. At the point shown in figure 4.2,

the recognizer was unsure if the user said “in the lonely sea”, “in the lonely seed”,

“to the lonely sea”, or “to the lonely seed”. The user must now choose which

branch to take within the recognition hypothesis space.

Primary predictions are the words that Speech Dasher thinks are most prob-

able at the current location. Primary predictions appear in alphabetical order

in the Dasher display. In figure 4.2, the words “to” and “in” are the primary

70

4.3 Interface Description

Figure 4.3: The user wants “sky” but the primary prediction was “skies”. By going

into the escape box, the user can spell “sky” using a combination of information from

the speech recognition result and from a general model of English.

predictions. The primary predictions are always big and easy to navigate to.

The recognizer may also have a set of much less probable word predictions.

These secondary predictions always appear below the primary predictions inside

the escape box. The escape box is a red box labeled with an asterisk that appears

at word boundaries. The user navigates to the escape box when Speech Dasher’s

primary predictions are wrong. Once inside the escape box, the Speech Dasher

model offers the secondary predictions as well as all the other letters of the alpha-

bet. This makes it possible to spell any word, regardless of whether it appeared

in the recognition lattice. Figure 4.3 shows an example of using the escape box

to perform a correction.

4.3.2 Correction Styles

Speech Dasher supports two different styles of performing corrections:

71

CHAPTER 4. SPEECH DASHER

(a) Selecting the error (b) After correction

Figure 4.4: Example of using selective correction. The user has selected “time” in the

text box using the mouse (left). The Dasher display is updated to show this portion

of the hypothesis space. The blue highlighting of the text indicates that this text will

be replaced by anything written via Dasher navigation. The user then navigates in the

Dasher display to the alternate hypothesis “of times” (right). The blue highlighted text

is replaced with the red highlighted text during navigation.

• Full navigation – In full navigation, the user simply navigates through

the entire hypothesis space. This method can be thought of as combining

proofreading and correction into one procedure. This style of correction is

good when the best recognition result has many errors. Figure 4.2 shows

an example of the full navigation style.

• Selective correction – In selective correction, the user highlights errors

in the text result box using the mouse. The Dasher display is then up-

dated to show that part of the hypothesis space. Whatever the user then

writes via Dasher navigation is used to replace the highlighted text in the

text result box. This style of correction is good when the best recognition

result has only a few errors. Figure 4.4 shows an example of the selective

correction style.

72

4.4 Probability Model

(a) Before spoken correction (b) After spoken correction

Figure 4.5: Speech Dasher after the user speaks “the quick brown fox” (left). The user

decides to change the text to “the quiet red fox”. The user highlights “quick brown”

with the mouse, turns on the microphone, and says “quiet red”. The spoken correction

is integrated into the original hypothesis space (right). While the best hypothesis of the

spoken correction was incorrectly recognized as “quiet to read”, the user can select the

correct text by navigating in Dasher.

4.3.3 Spoken Corrections

In either correction style, users can use speech to help correct their text. The user

does this by speaking the words he or she wants at a certain point in the text.

The spoken correction is then integrated into the Dasher display. If the user has

selected text in the result box, the selected text is replaced with the best result

from the spoken correction. The user turns the microphone on or off using either

the right mouse button or by using the buttons at the bottom of the interface.

Figure 4.5 shows an example of a spoken correction.

4.4 Probability Model

In this section, I give the details of the probability model used by Speech Dasher.

This model generates the Dasher display showing the various words in the recog-

73

CHAPTER 4. SPEECH DASHER

nition. In prior work [146], I focused on making Speech Dasher’s model work

with a commercial recognizer that output only a ranked n-best list. Here I in-

stead use a lattice that contains all the probabilistic information available from

the recognition process.

4.4.1 Lattice Processing

Before its use in the Speech Dasher model, the recognition lattice undergoes

several processing steps. These steps serve to keep the lattice to a manageable size

and also to convert the language and acoustic likelihoods in the lattice to posterior

probabilities. The posterior probabilities are used by the Speech Dasher model

to assign penalties to the various recognition hypotheses. The lattice processing

steps are as follows:

• Forward/backward reduction – Redundant lattice nodes were combined

with a single forward and backward reduction pass [159]. This process

maintains the same lattice paths and probabilities while making the lattice

smaller.

• Posterior pruning – Lattice nodes with a posterior probability less than a

fixed constant times the posterior probability of the best path were removed.

This removed low-probability hypotheses resulting in a smaller lattice.

• Compact trigram expansion – The lattice was expanded and rescored

using a compact trigram expansion algorithm [159]. This allowed the proper

trigram language model probabilities to be assigned to all paths in the lat-

tice. This was necessary because Sphinx, despite decoding with a trigram,

only exposed a bigram recognition lattice (see chapter 5, section 5.5.5).

• More posterior pruning – Another round of posterior pruning was per-

formed to reduce the size of the expanded lattice.

After the above steps, the recognition lattice is simplified to contain just the

information used by the Speech Dasher probability model. This removes tim-

ing information, pronunciation probabilities, acoustic likelihoods, and language

74

4.4 Probability Model

brown

the

<s> </s>foxa

quick brawn
1.00.9

1.0

0.4

0.6
0.1

1.0

1.0 1.0

Figure 4.6: Lattice after simplification and the addition of the edge penalties used by

the Speech Dasher model. The penalties are based on the posterior probabilities of the

nodes in the lattice.

model likelihoods. The simplified lattice consists of a set of nodes where each

node has a word label, a posterior probability, and a set of nodes reachable from

that node.

In order to compute the symbol probabilities required by Dasher, Speech

Dasher compares different paths in the lattice to see how likely they are. A path

in the Speech Dasher model incurs a penalty for every edge it traverses. Initially,

the penalty on each edge of the lattice is set to the posterior probability of the

node the edge goes to. An example lattice after simplification and the addition

of edge penalties is shown in figure 4.6.

After the above processing steps, I perform an additional step in which edges

are added that skip over words. By adding these skip edges, extra hypotheses

are added to the lattice that cover all one-word recognition insertion errors. So

for example, if the recognition lattice has the hypothesis “the quick brown fox”,

Speech Dasher would allow the user to write “the brown fox“, “the quick fox”,

and so on. I found in previous work [146], that this technique helped reduce

the amount of information required to perform corrections. The penalty of each

added edge was set to be a constant αins multiplied by the penalties for all edges

skipped over in the original lattice. So for example, in figure 4.7 the penalty for

the new edge from “quick” to “fox” is αins · (0.4 · 1.0 + 0.6 · 1.0).

4.4.2 Computing the Symbol Probabilities

Each box in Dasher requires a probability distribution over all symbols in the

alphabet. The symbol alphabet S contains both letters and the word boundary

75

CHAPTER 4. SPEECH DASHER

brown

the

<s> </s>foxa

quick brawn
1.00.9

1.0

0.4

0.6

0.1

1.0

1.0 1.0

0.01 0.004
0.01

0.01

0.01

0.006

0.004

0.006

Figure 4.7: Lattice after the addition of new edges that cover all one-word recognition

insertion errors. The new edges are shown as dashed red lines. The calculation for the

new edges’ penalty values used αins = 0.01.

symbol (denoted here by an underscore). The goal of the Speech Dasher model

is to compute:

P (st+1 | lattice, s1, ..., st) (4.1)

where s1, ..., st ∈ S are the t symbols that have been written thus far in Dasher.

Speech Dasher’s model computes this probability by first finding the set of

paths in the lattice that are consistent with the symbol history. For the moment,

I will assume that at least one such path exists. So for example, given the lattice

in figure 4.7, if the symbol history is “the quick br”, then there are two possible

paths. One path goes to the “brawn” node and the other goes to the “brown”

node. Given these two paths, Speech Dasher predicts that the next symbol would

be either “a” or “o”. The model assigns probabilities to the two letters based on

the total penalties incurred by each path as it traversed edges in the lattice.

I will denote a path by ρ and the penalty value of a path by V (ρ). Let

C(s1, ..., st+1) be the collection of paths that are consistent with the symbol

history s1, ..., st+1. The probability of the next symbol is:

P (st+1 | lattice, s1, ..., st) =

∑
ρ∈C(s1,...,st+1) V (ρ)∑

sx∈S

∑
ρ∈C(s1,...,st,sx) V (ρ)

. (4.2)

4.4.3 Backing Off

A particular sequence of symbols may not always be in the lattice. For example,

in figure 4.7 there are no paths consistent with “the quie”. This results in the

76

4.4 Probability Model

model predicting zero probability for all symbols in the alphabet. This prevents

words not in the lattice from appearing in the primary predictions in Speech

Dasher. Such out-of-lattice words can be written via the secondary predictions

that appear inside the escape box. In section 4.4.6, I will describe how symbol

probabilities are calculated in the escape box.

For the time being, assume the user has used the escape box to write an out-

of-lattice word. After completing the word in the escape box, Speech Dasher tries

to get the user back on track somewhere in the lattice. It does this by assuming

the recognizer has committed a deletion or substitution error somewhere in the

lattice. A new search for paths is initiated, but this time each path is allowed to

make a single deletion or substitution error.

During the new search, paths are assessed a penalty when they use their

allowed error. A deletion error is assessed a penalty of αdel and substitution errors

are assessed a penalty of αsub. Using the collection of paths that are allowed to

make an error, the probability distribution over symbols can be calculated using

(4.2). If no paths are found using a single error, all paths are allowed to make two

errors and the search is repeated. The number of errors continues to be increased

until at least one path is found matching the lattice.

Figure 4.8 show an example of the backing off procedure. Once a non-empty

set of paths is found, the model can once again make symbol predictions based

on the penalties of the set of paths. A path’s total penalty is the multiplication of

all penalties incurred traversing edges in the lattice plus any αsub or αdel penalties

associated with the path making substitution or deletion errors.

4.4.4 Pruning

There are two types of pruning used by the Speech Dasher model. The first type

is used to keep the search for possible paths tractable. As just described, every

time the model backs off, paths are allowed an additional word error. This causes

a large growth in the number of possible paths in the lattice. During the path

77

CHAPTER 4. SPEECH DASHER

Figure 4.8: The user has written the “the quiet ”. A substitution error at the node

“quick” allows the two red paths to reach the “brawn” and “brown” nodes. A substitu-

tion at the “quick” node also allows the blue path to reach “fox” via the insertion edge

between “quick” and “fox”. Using a deletion error after “the”, the green path can reach

the “quick” node. So at this point, Speech Dasher would predict the user is going to

write the letter “b”, “f” or “q”.

search, I prune out all but the top βprune paths. The paths are pruned based on

their penalty value.

The second type of pruning is used to remove unlikely hypotheses from the

primary prediction part of the display. This pruning uses a threshold value on

the symbol probability from (4.2). Symbols with a probability less than αmin are

set to zero. The symbol probabilities are then renormalized. This pruning only

applies in the primary prediction part of the Dasher display. It does not apply

when inside the escape box. This pruning has the effect of causing the primary

predictions to be highly peaked at only the most probable word hypotheses.

4.4.5 PPM Language Model

As I will describe next, the escape box in Speech Dasher makes use of a letter-

based language model. This language model is based on the text compression

algorithm prediction by partial match (PPM) [32]. Speech Dasher uses PPM

to generate the probability distribution over letters based on the previous letter

history. In PPM terminology, the number of previous symbols conditioned on

is called the order. An order-1 model conditions on one previous letter (a bi-

gram language model), an order-2 conditions on two previous letters (a trigram),

78

4.4 Probability Model

etc. Information is shared between different context lengths according to PPM’s

escape mechanism. Dasher uses the PPM-D escape mechanism [72] which is a

slight modification of PPM-C [107]. The PPM language model can adapt to the

user’s writing by updating its counts based on the text seen. For further details

about PPM, see [14; 143].

4.4.6 Secondary Predictions

As previously discussed, some words may be missing from the lattice. Speech

Dasher allows writing of any word in the secondary predictions. These predictions

appear inside the special escape box. The escape box appears only at word

boundaries and is allocated a fixed amount of conditional probability. In this

work, I used 20% of the probability mass for the escape box. Once inside the

escape box, the model interpolates between four different models:

• Lattice paths – A search for paths is conducted based on the symbol

history. Inside the escape box, no minimum probability threshold is used.

Additionally, the highly probable paths that appeared outside the escape

box are given zero probability inside the escape box. The interpolation

weight for this model is λlat.

• Uniform lattice paths – The search for paths is done as normal, but the

penalty of each path is set uniformly. This smooths the distribution over

paths, allowing low scoring paths to still have an appreciable size in the

Dasher display. The interpolation weight for this model is λuni.

• PPM – The PPM language model is used to predict symbols based on the

previous symbol history. The interpolation weight for this model is λppm.

• Shortened PPM – The PPM language model makes predictions using a

context that stops at the first word boundary symbol. This makes the PPM

prediction less sharply peaked since only the word currently being spelled

out is used to predict upcoming letters. The interpolation weight for this

model is λshort.

79

CHAPTER 4. SPEECH DASHER

brown

quiet

the

<s> </s>foxa

quick brawn

red

read

Figure 4.9: Example of the spoken correction “quiet red” being spliced into an existing

lattice. The blue nodes are the original lattice. The yellow nodes are from the spoken

correction. The dotted edges show the edges that splice the new lattice into the original.

The edges highlighted in red show the original lattice edges that were assessed a penalty.

A symbol’s probability inside the escape box is the sum of its probability

under each of these four models multiplied by the λ interpolation weights. The

interpolation weights sum to one. In this work, the interpolation weights were set

to be equal. This resulted in half the probability mass in the escape box being

allocated according to the general language model. In testing, I found this was a

good compromise that provided a relatively consistent user experience while still

providing the ability to utilize less probable lattice paths.

4.4.7 Spoken Corrections

Spoken corrections are accomplished by splicing the lattice of the spoken cor-

rection into the original lattice. The combined lattice then becomes the basis

for Speech Dasher’s probability estimates. The lattice is spliced in at a location

determined by the currently selected text (in the case of selective correction) or

by the current location in the Dasher display (in the case of navigation correc-

tion). At the location where the lattice is spliced in, all other outgoing edges

are assessed a penalty of αrespeak. This penalty causes the old predictions to be

deemphasized. Figure 4.9 shows an example of splicing a correction lattice into

an existing lattice.

80

4.5 Speech Recognition

4.5 Speech Recognition

For speech recognition, I used CMU Sphinx and the PocketSphinx decoder [74].

While PocketSphinx was designed for mobile devices, I found it also provided fast

and accurate recognition on a desktop computer. In this section, I describe the

details of the recognition setup I used for my Speech Dasher experiment.

4.5.1 Acoustic Model

I trained both US and UK English acoustic models following the recipe described

in [147]. I used an HMM topology of 5 states with skip transitions. I trained

cross-word triphones using 39 CMU phones without stress markings plus silence.

I parameterized audio into a 51-dimensional feature vector consisting of 12 Mel-

frequency cepstral coefficients plus their short-term deltas, long-term deltas, delta

deltas, and three 0th cepstral power terms.

My US English model was trained on 211 hours of WSJ [5; 57] training data.

I used a semi-continuous model with 1024 codebook Gaussians, 8000 tied-states,

and the CMU pronunciation dictionary.

My UK English model was trained on 16 hours of WSJCAM0 training data. I

used a semi-continuous model with 256 codebook Gaussians, 4000 tied-states, and

the BEEP pronunciation dictionary. I mapped the BEEP phone set to the CMU

phone set and added missing words from the CMU pronunciation dictionary.

From the original gender-independent model, I create gender-dependent models

using maximum likelihood linear regression (MLLR) adaptation [96] of the means

followed by maximum a-posteriori (MAP) adaptation [59] of the means, mixture

weights and transition matrices.

After recognition, lattices were post-processed as described in section 4.4.1.

This reduced their size and prepared them for use in the Speech Dasher model.

During the posterior pruning step, I pruned lattice nodes that had a posterior

probability less than 1×10−3 times the posterior probability of the most probable

lattice path. In the user study (to be described in section 4.6), recognition was

81

CHAPTER 4. SPEECH DASHER

performed on a total of 1008 utterances. Before post-processing, the original

recognition lattices had an average density of 416 words per second, a 1-best

WER of 25%, and an oracle WER (the lowest WER of any lattice path) of 7.5%.

After post-processing, the pruned lattices had an average density of 61 words per

second, a 1-best WER of 23%, and an oracle WER of 9.3%. The original lattices

had a higher 1-best WER because the lattices returned by Sphinx had only bigram

language model probabilities. In the post-processing phase, I rescored the lattice

with a trigram language model and this improved the 1-best WER.

4.5.2 Audio Capture and Normalization

Audio was recorded at 16 kHz using a wired Sennheiser PC 166 microphone. The

audio was streamed to the recognizer as soon as the microphone was enabled.

Audio was normalized using cepstral mean normalization/subtraction [99] based

on a prior window of audio.

4.5.3 Language Model

I trained a trigram language model using: newswire text from the CSR-III text

corpus (222M words), interpolated modified Kneser-Ney smoothing, and a vo-

cabulary of the top 64K words in the corpus. I trained the initial language model

with no count cutoffs and then performed entropy-pruning [137] using a threshold

of 1×10−8. The resulting language model had 8.7M bigrams and 12.4M trigrams.

4.6 User Study

In this section, I describe the longitudinal user study I conducted to investigate

whether speech improved users’ ability to write with Dasher. In particular, I

investigated people controlling Dasher using only their gaze (via a gaze track-

ing device). This combination of gaze-tracking and speech might be useful for

82

4.6 User Study

people with disabilities that have both eye and speech control but cannot use a

conventional keyboard or mouse.

I used a within-subjects experimental design with two conditions:

1. Dasher – Participants used conventional Dasher (without speech input) to

write sentences.

2. Speech Dasher – Participants spoke sentences to a speech recognizer and

then corrected any errors using Speech Dasher.

4.6.1 Software Setup and Parameters

The experimental software used in both conditions was based on Dasher v3.2.0.

The eye tracker mode of Dasher was enabled. This mode enables users to reverse

by looking to the extreme top or bottom of the right side of the display. This

allows users to reverse while continuing to look for their desired string.

The PPM language model used in both conditions was trained on 25M words

of newswire text from the CSR newswire corpus. As the participants were writing

(unseen) newswire sentences, this setup tests the situation where Dasher’s lan-

guage model is well adapted to the user’s writing style. The PPM model made

predictions based on the prior 7 letters of context. I used an alphabet of 26 lower

case letters plus apostrophe and period. An implicit context of a period followed

by a space was assumed at the start of every sentence. The adaptation of PPM

was turned off for the study. Adaptation would have had little effect as the model

was well trained on newswire text and the participants were writing text in a sim-

ilar genre. Adaptation also would have made it more difficult to separate gains

made by proficiency using gaze tracking versus changes due to adaptation of the

language model.

The Speech Dasher probability model has a number of free parameters. Ta-

ble 4.1 lists the settings I used for the user study.

83

CHAPTER 4. SPEECH DASHER

Parameter Value Description

αsub 0.08 Path penalty for substitution errors

αins 0.01 Path penalty for insertion errors

αdel 0.01 Path penalty for deletion errors

αmin 0.20 Minimum probability for primary predictions

λlat 0.25 Lattice model escape box interpolation weight

λuni 0.25 Uniform lattice model escape box interpolation weight

λppm 0.25 PPM model escape box interpolation weight

λshort 0.25 Shortened PPM model escape box interpolation weight

βprune 32 Maximum paths to keep during search

Table 4.1: Parameter settings of the Speech Dasher model as used in the user study.

4.6.2 Participants and Apparatus

I recruited 3 participants. All participants were able-bodied and had no (uncor-

rected) visual impairment. Here are the relevant details about each participant:

• US1 – This participant was a native speaker of North American English

and used the US acoustic model. This participant had no prior experience

using a gaze tracker and had used Dasher with a mouse for about an hour

prior to the study.

• UK1 – This participant was a native speaker of British English and used

the UK acoustic model. This participant had significant experience both

with gaze tracking and with Dasher.

• DE1 – This participant was a non-native speaker of English and used the

US acoustic model. This participant had no prior experience using a gaze

tracker and had never used Dasher.

Participants used a MyTobii P10 gaze tracker (figure 4.10). The P10 is a single

unit that combines the gaze tracking camera, an LCD monitor, and a Windows

XP computer running at 1.5 GHz. The interface was presented at a resolution of

1024 × 768 and occupied the entire 15′′ screen.

84

4.6 User Study

Figure 4.10: The MyTobii P10 gaze tracker used in the study. The tracking camera is

built into the screen.

4.6.3 Sessions

Each participant took part in a series of sessions which occurred over a two week

period. No more than two sessions were conducted on any one day. If two sessions

occurred on the same day, they were separated by at least 4 hours. There were

four types of sessions:

• Introduction – In the very first session, the participant was given about

15 minutes to play gaze-controlled games such as tic-tac-toe. This served

to familiarize the participant with using a gaze tracker. At the end of the

session, the participant was shown the Dasher interface and allowed to write

by gaze for about 5 minutes. In the introductory session, the participant

did not use speech and was free to write anything.

• Gaze tracking, phase 1 – Participants wrote for 15 minutes in one condi-

tion (either Dasher or Speech Dasher). After a break of at least 15 minutes,

participants wrote for 15 minutes in the other condition. The order of con-

ditions was swapped after each session. The gaze tracker was calibrated

at the start of each condition. Participants completed between 6 and 8

phase-1 gaze tracking sessions. This phase of sessions served to get all par-

ticipants up to an expert level of performance using Dasher and the gaze

85

CHAPTER 4. SPEECH DASHER

tracker. Also during this phase, various changes were made to the gaze

tracker settings to improve Dasher navigation (see section 4.6.4).

• Gaze tracking, phase 2 – Participants did a final three gaze tracking

sessions. The procedure was the same as in the phase 1 sessions. These

sessions represent expert level performance and used the optimum gaze

tracking settings found during phase 1.

• Mouse – After the conclusion of all gaze tracking sessions, participants

did one additional session using a conventional mouse instead of the gaze

tracker.

4.6.4 Mouse Smoothing

The MyTobii P10 gaze tracker had two settings that affected the movement of

the mouse pointer, speed and fixation sensitivity. For the first few sessions of US1

and DE1, both settings were set to normal. After this point, the speed setting

was changed to “very fast”. All of UK1’s sessions used a speed of “very fast”.

The fixation sensitivity was set to normal for most of phase 1’s sessions and then

changed to “high” at the end of phase 1. I found these final settings allowed

experienced Dasher users to navigate the fastest with the gaze tracker.

4.6.5 Interface Modifications

I made a number of modifications to facilitate the user study and to make Dasher

easy to use with a gaze tracker:

• Target sentence display – The target sentence the user was suppose to

write was displayed at the top of the window (figure 4.11). To encour-

age participants to read the sentence, I displayed the target sentence in

teleprompter style (displaying each letter after a short delay). The sen-

tence was also read out to the participant using the Microsoft text-to-speech

(TTS) engine. At any point, the participant could press the space bar to

replay the TTS audio for the target sentence.

86

4.6 User Study

Figure 4.11: The experimental interface after initial presentation of the target sentence

(displayed in the top text box). The button in the lower right is activated by dwelling

over it for one second. The bottom slider allowed the user to control the speed of Dasher

zooming. The speed slider was changed using the mouse.

• Dwell button – I implemented a large dwell button in the lower part of

the interface (figure 4.11). The dwell button was “clicked” by dwelling on

it for one second. During the one second period, 85% of gaze locations had

to be inside the button. As the user dwelled on the button, it gradually

changed from gray to red. When successfully activated, the dwell button

flashed blue and played an audible sound. After a “click”, the dwell button

was deactivated until the user looked away from the button.

In phase one of the gaze tracker sessions, the dwell button was in the lower

right-corner. I found this made it more difficult for users to use Dasher

because extreme gaze directions were sometimes confused with dwelling on

the button. In phase 2, the button was moved to the lower-left corner

to make it easier for users to reverse without accidentally activating the

button.

• Audio feedback of words – After writing a new word in Dasher, the

word was played back to the user using text-to-speech. This provided users

87

CHAPTER 4. SPEECH DASHER

with feedback about what had just been written without requiring the user

to divert their gaze away from navigating to the next word.

• Slow-down region – I added a feature that allowed navigation to be pro-

gressively slowed by dwelling in a circle at the center of the navigation

display (figure 4.12). If a user looked inside the circle, navigation speed

was progressively dampened. After 1.25 seconds, navigation stopped com-

pletely. If a user looked outside the circle, zooming speed was progressively

increased. This slow-down region allowed the user to stop temporarily in

order to rest, look at the target sentence, look at what had been written,

or move to the dwell button. Feedback about the current level of speed

dampening was provided by filling the circle with a semi-transparent red

color. The fill became progressively more red as speed was dampened. If the

user looked off the top or bottom of the Dasher navigation area, the speed

dampening was accelerated, stopping navigation completely after only 0.3

seconds.

In phase one of the gaze tracker sessions, the slow-down region was 100

pixels in diameter. In phase 2, the slow-down region was increased in size to

150 pixels. The larger size made it easier to activate using the unsmoothed

mouse settings used in phase 2. In addition, in phase 2 the slow-down region

was not activated if the user looked off the top or bottom of the Dasher

display area in the right 50% of the screen. This made it easier for users to

reverse using Dasher’s eye tracker mode.

4.6.6 Target Sentences

The target sentences were newswire sentences from the set-aside directory of the

CSR-III corpus. I chose sentences with between 8 and 12 words, removing all

punctuation except for apostrophes, and making each sentence lower case. Using

the trigram language model used for recognition, the average per-word perplexity

was 97. Using the PPM language model used in Dasher, the information content

was 1.9 bits per symbol. The sentences had an out-of-vocabulary rate of 0.7%

using the 64K vocabulary. The target sentences were excluded from the data

88

4.6 User Study

Figure 4.12: The user after writing “april in par” in the Dasher condition. As letters

are completed, they are added to the text box in the lower left. By dwelling inside the

red circle in the center, navigation could be temporarily stopped.

used to train the PPM and recognition language models. Participants received

the target sentences in random order.

4.6.7 Method

In the Dasher condition, after presentation of the target sentence, dwelling on a

Correct button caused the main navigation display to appear and zooming to

automatically begin. As the user wrote, letters were output in the text box in

the lower left (figure 4.12). Once the user had completed the sentence, dwelling

on the Done button moved to the next sentence.

In the Speech Dasher condition, after presentation of the target sentence,

dwelling on a Mic on button turned on the microphone. After speaking the

sentence, dwelling on a Mic off button turned off the microphone. I allowed only

a single attempt at recognition for a particular target sentence. If a participant

misspoke, correction had to be done via navigation in the main display.

89

CHAPTER 4. SPEECH DASHER

Figure 4.13: User at the start of navigation in the Speech Dasher condition. The best

recognition hypothesis is “in april in paris may never be the same”. The recognition

result includes an insertion error of the word “in”. By navigating to the top set of boxes

in the main display, the correct sentence can be written.

After a short recognition delay (2.0 s± 1.1 s), a beep signaled recognition was

complete and the navigation display would appear. The best recognition hypoth-

esis was initially displayed in the text box in the lower left (figure 4.13). If the

recognition was completely correct, the user could dwell on the Done button to

move immediately to the next sentence. Otherwise, the user could begin naviga-

tion in the main display and the best hypothesis would be replaced by whatever

the user wrote in Dasher. Once the user had completed the sentence, dwelling on

the Done button moved to the next sentence.

In both conditions, the participant was told to proceed “quickly and accu-

rately”. The participant could adjust the speed of zooming via a slider at the

bottom of the window. The speed slider was controlled using a conventional

mouse and could be adjusted between sentence tasks as the participant saw fit. I

encouraged each participant to increase the speed setting as he or she progressed

through the study.

90

4.6 User Study

4.6.7.1 Collection Errata

In participant DE1’s second session, the Dasher condition was accidentally omit-

ted. In participant US1’s final gaze tracking session, Dasher’s eye tracker mode

was mistakenly turned off. This session was replaced with a new session con-

ducted the next day.

4.6.8 Overall Results

In this section, I provide summary statistics and plots for all the gaze tracking

sessions (both phase 1 and phase 2).

4.6.8.1 Error Rate

The recognition error rate is the error rate of the speech recognizer’s best hy-

pothesis (applies only to the Speech Dasher condition). Recognition error rate

was measured using the word error rate (WER). Over all gaze tracking sessions,

the participant average WER was 22% and recognition took 1.4× real-time. Fig-

ure 4.14 shows the WER for each participant. The three participants saw differ-

ent levels of recognition errors. US1 had the best recognition of 10%, UK1 had a

WER of 15%, and DE1 a very high WER of 42%.

The user error rate is the error rate of the final text written by the partici-

pants. I measured the user error rate using both word error rate (WER) and the

character error rate (CER). The CER is the character edit distance between the

target sentence and what the user wrote divided by the number of letters in the

target sentence. In both conditions, participants wrote the target sentences with

very few errors (figure 4.15 and 4.16). Over all gaze tracking sessions, the user

error rate was 1.3% WER (0.59% CER) in Dasher and 1.7% WER (0.70% CER)

in Speech Dasher.

91

CHAPTER 4. SPEECH DASHER

US1 UK1 DE1

0
2
0

4
0

6
0

8
0

1
0
0

Participant

R
e
c
o
g
n
it
io

n
 W

E
R

 (
%

)

Figure 4.14: Recognition word error rate on sentences spoke by each participant during

the gaze tracking sessions.

4.6.8.2 Entry Rate

The entry rate was calculated in words per minute (wpm). I used the standard

convention defining a “word” as five consecutive characters. In the Dasher con-

dition, I used the time interval between the end of the dwell on the Correct

button and the start of the dwell on the Done button. In the Speech Dasher

condition, I used the time interval between the end of the dwell on the Mic on

button and the start of the dwell on the Done button. Note that I excluded the

overhead associated with the dwell button delay in both conditions. The entry

rates included correction time, audio recording, and recognition delays.

I also report the information rate. This measures how much information

content was in the text written by the participant. Uncommon words have a

higher information content. Information rate was measured in bits per second

(bps) and was calculated using the PPM language model used in the study. The

information rate allows easier comparison between the results presented here and

any future experiments using other language model training material, languages,

etc.

92

4.6 User Study
0

1
2

3
4

5
6

7

Session

U
se

r
er

ro
r

ra
te

 (
W

E
R

)

1 3 5 7 9 11

●

●

●

●

●

●

●

●

●

●●

●

●

●

US1
UK1
DE1

(a) Dasher

0
1

2
3

4
5

6
7

Session

U
se

r
er

ro
r

ra
te

 (
W

E
R

)

1 3 5 7 9 11

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

US1
UK1
DE1

(b) Speech Dasher

Figure 4.15: User error rate (measured in word error rate) during all gaze tracking

sessions in the study. The phase 2 sessions are shown with a double symbol.

0
1

2
3

4

Session

U
se

r
er

ro
r

ra
te

 (
C

E
R

)

1 3 5 7 9 11

●

●

●

●

●

●

●

●

●

●●

●

●

●

US1
UK1
DE1

(a) Dasher

0
1

2
3

4

Session

U
se

r
er

ro
r

ra
te

 (
C

E
R

)

1 3 5 7 9 11

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

US1
UK1
DE1

(b) Speech Dasher

Figure 4.16: User error rate (measured in character error rate) during all gaze tracking

sessions in the study. The phase 2 sessions are shown with a double symbol.

93

CHAPTER 4. SPEECH DASHER

In each 15-minute session, participants wrote on average 20 sentences in

Dasher and 33 sentences in Speech Dasher. Over all gaze tracking sessions, par-

ticipants’ entry rate was 16 wpm (2.5 bps) in Dasher and 37 wpm (5.6 bps) in

Speech Dasher. In the Speech Dasher condition, 40% of sentences were recog-

nized completely correctly. These sentences obviously had a very fast entry rate.

Removing sentences recognized completely correctly, participants still had an en-

try rate of 26 wpm (4.0 bps).

Participants became faster in both conditions as the study progressed (fig-

ure 4.17 and 4.18). Participants’ entry rate in Speech Dasher was much more

variable between sessions. This was presumably due to the large effect that

recognition accuracy had on entry rate.

4.6.8.3 Influence of WER on Performance

I also wanted to see how performance degraded at different recognition word

error rates. Figure 4.19 shows the recognition WER and entry rate for each of

the participants’ sentences. As expected, the lower the recognition WER, the

faster participants wrote. The Speech Dasher interface performs well even for

fairly high recognition word error rates. Participants’ average entry speed in the

Dasher condition was 16 wpm. Given the fit line in figure 4.19, participants would

write faster using Speech Dasher as long as WER was below 50%.

4.6.8.4 Speed Setting

Participants were allowed to set Dasher’s zooming speed. As shown in figure 4.20,

participants increased their setting in both conditions as the study progressed. All

participants eventually increased their speed setting to 4 bits per second or faster

in both conditions. In the Dasher condition, on sentences in which participants

used higher speed settings, they tended to write faster (figure 4.21).

94

4.6 User Study
0

10
20

30
40

50
60

Session

E
nt

ry
 r

at
e

(w
pm

)

1 3 5 7 9 11

●

●

●
● ●

● ●

● ●
●●●●

●

US1
UK1
DE1

(a) Dasher

0
10

20
30

40
50

60

Session

E
nt

ry
 r

at
e

(w
pm

)

1 3 5 7 9 11

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

US1
UK1
DE1

(b) Speech Dasher

Figure 4.17: Entry rate (measured in words per minute) for each participant during all

gaze tracking sessions. The phase 2 sessions are shown with a double symbol.

0
2

4
6

8

Session

In
fo

rm
at

io
n

ra
te

 (
bp

s)

1 3 5 7 9 11

●

●

●

●
●

● ●
●

● ●●●
●

●

US1
UK1
DE1

(a) Dasher

0
2

4
6

8

Session

In
fo

rm
at

io
n

ra
te

 (
bp

s)

1 3 5 7 9 11

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

US1
UK1
DE1

(b) Speech Dasher

Figure 4.18: Information rate (measured in bits per second) for each participant during

the gaze tracking sessions. The phase 2 sessions are shown with a double symbol.

The Speech Dasher information rate (right) was the information rate under the PPM

language model.

95

CHAPTER 4. SPEECH DASHER

Recognition WER (%)

E
n
tr

y
 r

a
te

 (
w

p
m

)

0 10 20 30 40 50 60 70 80 90 100

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

y = 50.2e
−−0.021x

 R
2
 = 0.67

US1
UK1
DE1
All

Figure 4.19: Participants’ sentences by entry rate and recognition WER. The solid

black line was fit to the data from all participants. The dotted colored lines were fit to

each participant’s data.

4.6.8.5 Gaze Location

During the experiment, I logged the users’ gaze location about 30 times per

second. Using this data, I calculated where participants were looking in each

condition (figure 4.22). The right side and center of the Dasher navigation display

were the most popular gaze locations. The main difference was that users in

Speech Dasher spent more time looking at the text box in the lower left. They

also spent more time looking at the target sentence in the top text box. This was

probably due to users comparing the recognition result with the target sentence

to determine if the result was completely correct.

96

4.6 User Study
0

1
2

3
4

5
6

Session

E
nt

ry
 r

at
e

(w
pm

)

1 3 5 7 9 11

●

●

●

●
●

●

●
●

●

●●●

●

●

US1
UK1
DE1

(a) Dasher

0
1

2
3

4
5

6

Session

E
nt

ry
 r

at
e

(w
pm

)

1 3 5 7 9 11

● ●

●
●

●
●

●
●

●

●

●●
●

●

●

US1
UK1
DE1

(b) Speech Dasher

Figure 4.20: The speed setting (in bits per second) chosen by participants in each

session. The phase 2 sessions are shown with a double symbol.

4.6.9 Expert Performance

Here I provide analysis of the final three gaze tracking sessions (phase 2 only).

These sessions used the final gaze tracking setting and improved interface lay-

out. In addition, by this point in the study, participants were experts at both

interfaces.

4.6.9.1 Expert Error Rate

In total, participants wrote 324 sentences in the last three Speech Dasher ses-

sions. The average participant recognition error rate was 22%. The WER varied

significantly between participants with a WER of 7.8% for US1, 12.4% for UK1,

and 46.7% for DE1.

Figure 4.23 shows the user error rates of participants in the last three gaze

tracking sessions. User error rates were low overall, with an average CER of 0.5%

in Dasher and 0.6% in Speech Dasher.

97

CHAPTER 4. SPEECH DASHER

0 1 2 3 4 5

0
1

2
3

4
5

User speed setting (bps)

In
fo

rm
a

ti
o

n
 r

a
te

 (
b

p
s
)

US1
UK1
DE1
y = 0.70x
y = x

Figure 4.21: Sentences plotted by user’s speed setting and the information rate of the

user’s writing in the Dasher condition. A point on the diagonal line y = x would occur

if a user was zooming at maximum speed without reversing or slowing down, and there

was no overhead to starting or stopping.

4.6.9.2 Expert Entry Rate

Figure 4.24 shows the entry rates of participants in the last three gaze tracking

sessions. The average participant entry rate was 20 wpm in Dasher and 40 wpm

in Speech Dasher. Compared to Dasher, participants wrote twice as fast using

Speech Dasher. In Speech Dasher, participants showed a wide range of entry

rates, presumably due to their differing recognition error rates. US1 was the

fastest at 54 wpm, UK1 was next at 42 wpm, and DE1 was at 23 wpm. On

sentences with at least one recognition error, participants still wrote at 30 wpm

in Speech Dasher (figure 4.24c).

4.6.9.3 Performance at High WER

Participant DE1 had the slowest Speech Dasher entry rate in figure 4.23b. His

slow entry rate was to be expected considering his high WER of 47%. I analyzed

98

4.6 User Study

(a) Dasher

(b) Speech Dasher

Figure 4.22: Heat map showing how frequently participants were looking at various

parts of the interface in each condition. The blue areas were the least looked at areas

and the red areas were the most looked at areas.

99

CHAPTER 4. SPEECH DASHER

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

US1 UK1 DE1

0
1

2
3

4
5

Participant

U
se

r
er

ro
r

ra
te

 (
C

E
R

)

(a) Dasher

●

●

●

●

●

●

●●

●

●
●

●

●

US1 UK1 DE1
0

1
2

3
4

5

Participant

U
se

r
er

ro
r

ra
te

 (
C

E
R

)

(b) Speech Dasher

Figure 4.23: The user error rate of participants in the last three gaze tracking sessions.

Error rate was measured using the character error rate (CER).

his data separately to see if he was seeing any benefit from speech. Table 4.2

shows the average writing speed of DE1. Even with his high recognition error

rate, DE1 still got a small benefit from Speech Dasher, writing 20% faster. This

demonstrates that Speech Dasher degrades gracefully in the face of inaccurate

recognition.

4.6.9.4 Gaze Tracking versus Mouse

Table 4.3 shows the average entry rates of participants in their last gaze track-

ing session compared to their final mouse session. In Dasher, participants were

actually slower using the mouse than using gaze tracking. In Speech Dasher,

participants performed about the same using the mouse or using gaze tracking.

There could be several reasons for participants’ slower mouse performance in

Dasher. The participants may have required more than one session to become

accustomed to mouse control. In addition, the mouse speed setting may have

needed to be faster for optimal Dasher use. Nonetheless, it is encouraging that

Dasher with gaze tracking was competitive with an input device that users had

much more experience with.

100

4.7 Discussion

US1 UK1 DE1

0
2
0

4
0

6
0

8
0

Participant

E
n
tr

y
 r

a
te

 (
w

p
m

)

(a) Dasher

US1 UK1 DE1

0
2
0

4
0

6
0

8
0

Participant

E
n
tr

y
 r

a
te

 (
w

p
m

)

(b) Speech Dasher

US1 UK1 DE1

0
2
0

4
0

6
0

8
0

Participant

E
n
tr

y
 r

a
te

 (
w

p
m

)
(c) Speech Dasher, WER >0

Figure 4.24: The entry rate of participants in the last three gaze tracking sessions.

The rightmost graph (c) shows performance on sentences with recognition errors.

4.7 Discussion

In this section, I discuss some of the limitations of my study. I also discuss

practical improvements to Speech Dasher based on lessons learned during the

study.

4.7.1 Limitations

4.7.1.1 Number of Participants

My user study used three participants. But even with this small number of

participants, the difference in speed between Speech Dasher and Dasher was

clear.

101

CHAPTER 4. SPEECH DASHER

Condition Subset Entry rate

wpm ± 95% CI

Dasher - 19.2 ± 0.9

Speech Dasher - 23.4 ± 2.9

Speech Dasher WER> 0 21.2 ± 2.2

0 5 10 15 20 25 30

Table 4.2: The entry rate of participant DE1 in the last three gaze tracking sessions.

The third row shows performance on sentences with recognition errors. The 95% confi-

dence intervals show the individual’s variance.

Condition Input Entry rate

wpm ± 95% CI

Dasher gaze 20.2 ± 1.9

Dasher mouse 16.8 ± 0.5

Speech Dasher gaze 39.9 ± 18.0

Speech Dasher mouse 41.4 ± 12.2

0 10 20 30 40 50 60

Table 4.3: The entry rate of all three participants in their final gaze and final mouse

sessions. The 95% confidence intervals shows variance between individuals.

4.7.1.2 Pointing Device

I tested users using a gaze tracker to control Dasher. Speech Dasher may also work

well with other more conventional pointing devices. In particular, participants

in the user study could not take advantage of Speech Dasher features such as

selective correction and spoken corrections.

102

4.7 Discussion

4.7.1.3 Comparison with Speech Correction

I did not test a correction interface that used speech as the primary correction

mechanism. Such an interface could be a competitive option for people writ-

ing via speech and gaze tracking alone. In my own testing with Nuance Dragon

NaturallySpeaking v9, I found that while speech-only corrections were sometimes

successful, often the mouse was required. The interface elements in Dragon were

too small for practical use with a gaze tracker. It would be interesting to inves-

tigate a correction interface using primarily speech-based corrections but where

non-speech interface elements were optimized for gaze tracking use.

4.7.1.4 Transcription Task

In the study, users wrote transcribed sentences I presented. This made it easy

to measure the correctness of their writing. But transcribing newswire text is

not a normal user activity. Users may have had more trouble remembering the

sentence then if they had composed their own sentence. While users could replay

the target sentence via TTS, sometimes it was not possible to guess a word’s

spelling from the TTS audio. In such cases, navigation had to be interrupted to

consult the target sentence. It would be interesting to test Dasher and Speech

Dasher in a more realistic composition setting.

4.7.2 Design Improvements

4.7.2.1 Eliminate Shared Boxes

Participants sometimes found they navigated into a word that looked correct,

only to discover later that the word’s ending was wrong. This was a problem

when several competing hypotheses shared an initial prefix. This caused a split

in the Dasher box hierarchy, which made the entire word difficult or impossible to

see before navigating into the prefix. For example, in figure 4.25, the user wants

to write “all administrations” but it is difficult to currently tell if that option is

inside the “admin” box or not. Another problem with shared prefixes is that the

103

CHAPTER 4. SPEECH DASHER

Figure 4.25: After writing the word “previously”, the user wants to write “all adminis-

trations”. It is difficult for the user to tell if the word “administrations” is present inside

the “admin” box.

letters of the word get split over a wide horizontal space and are not necessarily

aligned vertically. This makes comprehension of the complete word difficult. A

solution would be to predict full words in the non-escape area and not to allow

words with the same prefix to share an initial box.

4.7.2.2 Correspondence with Best Hypothesis

Speech Dasher displayed the best recognition hypothesis in the lower left text

box. This best hypothesis was the most probable path through the recognition

word lattice. This usually, but not always, corresponds to the words displayed

as primary predictions using Speech Dasher’s probability model. The primary

prediction could be different if, for example, the best lattice path’s first word had

a low probability compared to other paths. This low probability word would get

put in the escape box and not with the primary predictions. The probability

model should be changed to prevent this mismatch.

104

4.7 Discussion

4.7.2.3 Layout of Words

The letters in the Dasher display were aligned so letters in the same word appeared

on the same vertical baseline. But the horizontal width of words sometimes caused

them to visually overlap and obscure each another (e.g. “avoid” and “using” in

the top-right of figure 4.25). In many cases, this could be avoided by intelligently

offsetting words in close proximity.

4.7.2.4 More Responsive Model

The current probability model relies on tracking a large number of paths within

the recognition lattice. When the user diverges from the lattice, the model ex-

pends considerable computational effort trying to calculate where the user might

reenter the lattice. Despite optimization efforts, this occasionally caused notice-

able performance lags. Using a more compact representation for the recognition

result such as a word confusion network [104] might help alleviate this problem.

4.7.2.5 Variable Zooming Speed

Speech Dasher currently uses a single user-selected zooming speed. This may be

suboptimal. When navigating through a recognition hypothesis well predicted

by the lattice, even a slow zooming speed results in fast writing. In fact, slow

zooming is needed in order to read the words that are being presented in close

visual proximity. On the other hand, when navigating outside the lattice, the

letter-based predictions are typically much less strongly predicted and are more

visually separated. In this case, a faster zooming speed is needed for efficient

writing. Speech Dasher might benefit from different zooming speeds depending

on whether the user is writing something well predicted or not.

105

CHAPTER 4. SPEECH DASHER

4.8 Related Work

There has been only limited work in interfaces that combine speech and some sort

of continuous pointing or gesture interface. Huggins-Daines and Rudnicky [75]

developed a touch-screen interface that allowed user to interact with the alterna-

tive hypotheses within a recognition lattice. In their interface, users could “pull

apart” sections of the best recognition result to reveal other alternative hypothe-

ses in a given time region of the lattice. No user-trial results were reported.

In Kurihara et al. [91], an instructor’s handwriting was combined with speech

recognition to provide a confusion network correction interface. Their interface

displayed a static view of the hypothesis space compared to Speech Dasher’s dy-

namic zooming display. But similar to Speech Dasher, users could use a contin-

uous gesture to select between the alternative hypotheses. Their system resulted

in instructors needing fewer pen strokes to correct their text.

Akman [9] took the Speech Dasher idea and applied it to transcribing audio

files in Turkish. Akman developed a probability model for use in Dasher that

was based on the weighted finite state automata output of a Turkish research

recognizer. As in the Speech Dasher’s model, Akman’s model supports various

strategies for handling cases when what the user wanted was not in the speech

result. On two Turkish acoustic test sets, he compared his methods with my

original Speech Dasher model (based on n-best lists). His best model obtained

lower cross entropies of 0.26 and 0.54 bits per symbol compared to the Speech

Dasher model which obtained 0.45 and 0.60 bits per symbol. This shows the

advantage of using the probability information in the recognition lattice. No

user-trial results were reported.

While my focus here was not to improve normal Dasher’s gaze writing speed,

I highlight several studies that show the performance in my study was consistent

with past Dasher gaze tracking studies. I caution against drawing strong con-

clusions from comparing the entry rates between these Dasher experiments. The

entry rate (in wpm) in Dasher is related to how well the text is predicted by the

language model. This can vary depending on the language, training text, and

106

4.8 Related Work

PPM settings. In addition, differences in participants and experimental method

make comparison between studies tenuous.

In Ward et al. [158], 2 experts and 2 novice users wrote text using Dasher and a

gaze tracker. After an hour of practice, users wrote at 16–26 wpm (estimated from

figure 1b in [158]). After 3-8 hours of practice, my users wrote at 18–22 wpm.

The results in [158] are a superset of those appearing in Ward’s thesis [156].

In [156], the sentences used in the study had an information content of 1.7 bits

per symbol. In my study, sentences had a slightly higher information content of

1.9 bits per symbol.

Tuisku et al. [144] did the largest Dasher gaze tracking study to date. They

had 12 participants transcribe Finnish text using Dasher in a series of ten 15-

minute sessions. By the last session, participants wrote at 17 wpm. They showed

almost linear increases in participants entry rate over 1.5 hours of use. In my

study, I found users entry rate gains started to diminish by their final sessions

(after 3–8 hours of practice). It is possible their participants had not yet reached

their entry rate limit. Tuisku et al. had also allowed the PPM model to adapt

during the study. Since their training text was a Finnish novel and their test set

was a corpus of short phrases, I expect part of the entry rate increase reflects

adaptation of the language model as the study progressed. They did not report

the information content of their test phrases.

There have been numerous studies investigating correcting speech recognition

with traditional input devices such as keyboard, mouse and stylus. In Karat

et al. [80], 12 novice and 4 expert users dictated text from a book. They were

allowed to correct errors via speech, mouse or keyboard. Novice users’ entry

rate was 14 wpm while experts’ entry rate was 25 wpm. They do not report the

recognition error rate.

Shuhm et al. [139] used handwriting to correct recognition errors. Novices

had an entry rate of 5 wpm using pen correction and 7 wpm using mouse and

keyboard correction. In their study, the recognition WER was 25%.

In Horstmann [86], 24 expert speech recognition users with physical disabilities

were given text transcription and composition tasks. The majority of the users

107

CHAPTER 4. SPEECH DASHER

relied on the keyboard for correction (17 out of 24). The rest used speech or an on

screen keyboard to correct recognition errors. The users entry rate was 17 wpm

at a recognition WER of 15%.

Larson and Mowatt [93] had 12 users dictate text from a book. Users corrected

errors using speech, speech and a mouse, an alternates list, or a soft keyboard.

Using the reported average correction times and number of words per task, I

calculated the entry rate for each entry method: 5 wpm for speech, 13 wpm for

speech and mouse, 13 wpm for alternates list, and 17 wpm for soft keyboard.

They do not report the recognition error rate. In a second experiment, 6 users

were allowed to use any of the different correction methods. In this experiment,

users entry rate was 17 wpm at a WER of 13% (estimated from the reported

average words per task and total recognition errors).

4.9 Conclusions

Speech Dasher is a novel interface that allows users to correct recognition errors

by navigating through a speech recognizer’s many alternative hypotheses. Using

Speech Dasher, users were able to correct many recognition errors with only min-

imal effort. When the recognizer’s search space didn’t contain the right answer,

Speech Dasher allowed seamless fallback to efficient letter-by-letter predictive text

entry.

I showed that Speech Dasher could be a useful and efficient entry method for

people using only speech and their eyes. After four hours of practice, users were

able to write at 40 wpm despite a recognition WER of 22%. Even on sentences

that had a least one recognition error, users were still able to write at 30 wpm.

Using Dasher without speech, users were significantly slower, writing at 20 wpm.

This shows that Speech Dasher successfully leveraged recognition information to

greatly improve users’ writing efficiency.

108

Chapter 5

Touch-Screen Mobile Correction

5.1 Overview

Using speech recognition to enter text on a mobile device is an attractive alterna-

tive to conventional entry methods. This is because mobile devices typically lack

a keyboard. Without a keyboard, the device must rely on techniques such as pre-

dictive text, multi-tap, isolated character recognition, or handwriting recognition.

For an overview of mobile input methods, see [102; 173]. But key- and stylus-

based input methods all fall far short of the speed at which people can speak. For

example, users can dictate to a computer at 102 (uncorrected) words per minute

[93]. Besides its inherent input speed, speech is also a naturally acquired skill

that requires little practice from users.

However, speech recognition remains to prove itself as a competitive mobile

text entry method. There are a number of problems with using speech for mo-

bile text entry. The most serious problem is how to deal with recognition errors.

Mobile speech recognition is likely to experience even more errors than desktop

speech recognition due to limited processing power, poor quality microphones,

and background noise. Just as on the desktop, mobile speech recognition perfor-

mance is also bound to suffer due to the process of correcting recognition errors

[80]. While in [93] users dictated at 102 words per minute (wpm), after correction

109

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.1: The Nokia N800 device and a Bluetooth headset. The Parakeet continuous

speech recognition user interface is shown running on the device.

the actual writing throughput was only 10 wpm.

Another problem is the obvious privacy implications of using speech in a

mobile and possibly public setting. Finally, it has been argued that speech input

makes demands on a human’s memory and processing capabilities which could

adversely affect task completion [130]. Despite these caveats, the potential speed

and naturalness of mobile speech text entry make it an entry method worth

exploring.

Recently, researchers have made progress in developing continuous speech

recognition engines for embedded and mobile devices [33; 110]. Projects have

been undertaken to enable mobile use of research recognizers such as Sphinx [74],

SUMMIT [67] and Janus [87]. These developments help pave the way for my

exploration.

In this chapter, I describe Parakeet: a touch-screen interface I designed for

efficient mobile text entry using speech. Users enter text into their mobile Linux

device (such as the Nokia N800) by speaking into a Bluetooth headset microphone

(figure 5.1). The user then reviews and corrects the recognizer’s output using a

touch-screen interface.

110

5.2 Design Principles

The development of Parakeet followed several design cycles. My design was

guided to a large extent by computational experiments on recorded speech data.

These experiments helped from two perspectives. First, they helped guide my

decisions about design choices. For example, they helped me decide which edit

operations were most useful to include in the correction interface. Second, they

helped me find the optimal parameter settings for my user interface. For example,

I used experimental results to determine how many word alternatives to display.

The rest of this chapter is structured as follows. First, I discuss the principles

that guided my design. Second, I describe my interface design and detail the

experiments that helped shape that design. Third, I describe the details of my

mobile speech recognition system. Fourth, I present a user study investigating

how well the new interface worked in practice. Fifth, I present results from an

expert pilot study demonstrating the promising potential speech has as a mobile

text entry solution. Finally, I discuss limitations and implications of my findings

and then conclude.

5.1.1 Publication Note

The work presented in this chapter was joint work with Per Ola Kristensson.

The information contained in this chapter was published in part in the papers

“Parakeet: A Touch-Screen Interface for Continuous Speech Recognition on Mo-

bile Devices” [152] and “Parakeet: A Demonstration of Speech Recognition on a

Mobile Touch-Screen Device” [153] at the International Conference on Intelligent

User Interfaces (IUI’2009). This research was funded in part by Nokia.

5.2 Design Principles

Parakeet’s development was guided by five key design principles. In this section,

I describe these principles and how they relate to prior work.

111

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

5.2.1 Avoid Cascading Errors

Speech recognition is imperfect and recognition errors are ultimately unavoidable.

Thus, error correction is a crucial part of any speech recognition interface. As

previous research has shown (e.g. Karat et al. [80]), users have difficultly correct-

ing speech recognition errors using only speech. This is partly because errors may

cascade – recognition errors in the correction phase may require further correc-

tions, and so on. A possible solution is to use a different modality than speech for

correction. For example, Suhm et al. [139], investigated correcting speech using

pen gestures. For an in-depth review of multimodal speech interfaces, see Oviatt

et al. [116].

To avoid cascading errors, I also decided to create a multimodal speech in-

terface. In my interface, recognition is first performed on the user’s utterance.

The recognition result is then corrected using a method that is simple, direct and

transparent to the user. This correction method does not rely on any further use

of error-prone recognition technologies.

5.2.2 Visualize the Hypothesis Space

In a typical speech recognition interface such as Nuance Dragon NaturallySpeak-

ing, only the best recognition hypothesis is presented to the user. In order to

explore alternatives to this best hypothesis, the user must take explicit action.

For example, the user might highlight some text and issue a command to bring

up a list of alternative words. As observed by Kristensson and Zhai [89], this

style of error correction interface introduces a degree of uncertainty. The users

has to hope his or her action will expose the desired correction. If it does not,

the user has wasted effort. Such interfaces may lead to user frustration, which is

a common problem in intelligent user interfaces in general.

In designing my interface, I wanted to avoid forcing users to blindly search the

hypothesis space. I wanted the user to be able to see immediately, and without

explicit action, whether the desired correction was available. If the desired text

was not easily available, a more costly corrective measure could be used that

112

5.2 Design Principles

was guaranteed to succeed. For example, rather than providing a long list of

word alternatives that requires scrolling, I would rather present a small number

of alternatives. If the alternatives do not contain the correct word, the user can

invoke a software keyboard that is guaranteed to allow entry of the desired word.

5.2.3 Usable by Touch

I designed Parakeet for touch-screens for three reasons. First, touch-screens do

not require a stylus and are hence easier for users to interact with while on the

go. Second, one-handed usage is impossible with a stylus. There is evidence that

indicates users prefer mobile interfaces that can be operated with one hand [82].

Third, a well-designed touch-screen interface can also be used with a stylus, but

the converse does not necessarily hold. By creating a good touch-screen user

interface, I am also creating an interface suitable for stylus use.

5.2.4 Support Fragmented Interaction

I wanted my interface to be usable while walking around. In such a mobile setting,

users would need to divide their attention between interacting with the device

and dealing with their surroundings. Oulasvirta et al. [114] found that users

interacting with a mobile web browser while walking attended to the device in 4

to 8 second bursts. This finding has two implications. First, my interface needs

to enable users to quickly process and respond. Second, my interface needs to be

designed so that it is easy for users to pick up from where they left off after an

interruption.

Therefore, I designed Parakeet to minimize attention demands on the user.

For example, after recognition is completed, Parakeet flashes the entire display

screen and plays a short beep. This simple feedback frees the user to attend to

their surrounding almost entirely while waiting for recognition to complete.

113

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

5.2.5 Minimize Physical Actions

I designed Parakeet to help minimize the physical actions required by the user.

In a mobile setting, a large sequence of precise touch gestures is likely to go

wrong. I designed towards an interface that presents more visual information

rather than less. This may require several bursts of visual attention from the

user, but hopefully will require fewer motor actions. For example, a user might

enter a few letters of a word and then scan a list of predictions which allow

completion of their word with a single further physical action.

5.3 Interface Description

The main screen of Parakeet displays the recognizer’s best hypothesis along a

single line at the top (figure 5.2). If the best hypothesis cannot fit on the screen,

the user can scroll using the buttons on the left and right sides. In addition

to the best hypothesis, likely alternatives for each word in the best hypothesis

are displayed. For example, in figure 5.2 the word “worked” has three other

competing words (“work”, “were”, and “we’re”). The currently selected word in

each column is highlighted in green.

This display is based upon a word confusion network [65]. A word confusion

network is a time-ordered set of clusters where each cluster contains competing

word hypotheses along with their posterior probabilities. The word confusion

network is built from the lattice generated during the speech recognizer’s search.

By displaying more than a 1-best result, Parakeet allows the user to quickly

scan other likely word alternatives. This is done without requiring explicit user

action (as in standard interfaces such as Dragon).

114

5.3 Interface Description

Figure 5.2: The word confusion network correction interface. The user can touch the

word buttons to choose alternative words. The “X” button at the bottom allows words

to be deleted.

5.3.1 Available User Actions

5.3.1.1 Substituting Words

To substitute a word, the user can use several methods. The most direct method

is to simply touch an alternative word in the confusion network. This causes the

selected word to change color and updates the word displayed in the top row.

Sometimes several desired substitutions are in adjacent columns. In this case,

the user can slide his or her finger across each desired word to perform multiple

substitutions with one gesture.

5.3.1.2 Editing Words

The user’s desired word may not be one of the displayed alternatives. By touching

a word in the top row or by double-tapping any word, the user is brought to a

separate edit screen. Here they can use a predictive software keyboard to either

edit the selected word or enter an entirely new word (figure 5.3). The software

keyboard will be described in detail in section 5.4.

115

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.3: After touching the word “constitutional” in the word confusion network,

the user is brought to the software keyboard interface. The morphological variants for

“constitutional” are shown in a row above the keyboard.

5.3.1.3 Deleting Words

To delete words, the user touches the delete button (a box with a diagonal X,

cf. figure 5.2). If the user wants to delete several words at once, the user can

slide his or her finger across adjacent delete buttons. Often in speech recognition,

the recognizer gets off track and outputs several erroneous words in a row. In

such instances, it is particularly useful to be able to cross several delete buttons

at once. To make such contiguous delete actions easy, I aligned all the delete

buttons at the bottom.

5.3.1.4 Inserting Words

To insert a word, the user can touch the area between two columns. This brings up

a keyboard interface that allows the user to choose from a set of word candidates

or type a new word (figure 5.3). A second option is to touch a preceding word

and type a space and then the new word.

Sometimes, the user’s desired word may appear in a different column from

where the word is required. A third way to insert a new word is to touch and

hold a word for a moment. The background of the word then changes and the

116

5.3 Interface Description

Figure 5.4: The user is inserting the word “to” between the words “is” and “be” by

dragging the word “to” from the fourth column to the desired location.

word can be copied to another cluster (figure 5.4). During the copy, the current

destination cluster is highlighted in yellow in the top row of the display.

5.3.1.5 Correcting by Crossing

Similar to [91], I allowed users to correct errors by a continuous crossing gesture.

Figure 5.5 shows one fluid gesture changing “to” to “of”, changing “imports”

to “imported”, and deleting “and”. This crossing-based interaction method is

possible because in each column, only one item can be selected. Therefore, the

detection algorithm only needs to track the last word or delete button crossed in

each column. For example, in figure 5.5 the user has crossed both “but” and the

delete button in column 4. The detection algorithm will select the delete button

in column 4 since it was the last thing crossed. Users can start crossing anywhere

on the display and can cross in any direction.

The theoretical performance of crossing interfaces is of the same mathematical

form as Fitts’ law [7; 52]. At the same index of difficulty [52], crossing is more

efficient or on par with selecting items individually [7].

117

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.5: Selecting several words and the delete box in one crossing action.

5.3.2 Finding Useful Actions with a Simulated User

I used computational experiments to guide my decisions on what interface actions

to include. I also used the experiments to decide how many word alternatives

to use in each cluster. The experiments were done by performing recognition on

utterances from three standard acoustic test sets (WSJ1 si dt 05, WSJ0 si et 05,

WSJ0 si dt 05, 1253 total utterances). After recognition, I created a word con-

fusion network for each utterance. The recognition setup was as described in

section 5.5 except I used a vocabulary of the top 5K words in the CSR-III text

corpus [64]. This vocabulary resulted in an out-of-vocabulary (OOV) rate of 3.2%

on the WSJ test data.

Overall, the test utterances had a 1-best WER of 18%. This is higher than

might be expected on these relatively “easy” test utterances. This reflects com-

promises made to the recognition setup to keep memory and processing demands

reasonable for a mobile device. It also reflects the inclusion of OOV words in the

test data. I compare mobile and desktop recognition setups in section 5.5.4.

I assumed an “oracle” user, that is, a simulated user who made optimal use of

a given confusion network and set of interface actions to correct as many errors

as possible in the recognition result. While all errors can be corrected in Parakeet

via the software keyboard, in these experiments, the simulated user was assumed

118

5.3 Interface Description

Figure 5.6: Oracle word error rate (WER) as a function of cluster size in the confusion

network. The top line is using the original confusion network with no modifications. The

other lines show how error rate decreased when more correction features were added.

not to type letters using the software keyboard.

As shown in figure 5.6, increasing the number of words in each cluster allowed

more errors to be corrected. The majority of gains were seen by adding the first

few alternatives. This guided my decision to use a small cluster size of five. By

minimizing the cluster size, I was able to use larger and easier to touch buttons.

Adding a delete button to every cluster was shown to substantially reduce errors

(Del line, figure 5.6). This makes sense as every recognition insertion error can

be corrected.

I tested allowing copying words from clusters within two words of each other

(Del+Copy2 line, figure 5.6). This provided a small gain. As shown in figure 5.7,

bigger gains were possible when I allowed copying across longer distances. But

I doubt users would be likely to copy over such long distances. This is because

they would first have to notice their desired word in a distant cluster (possibly

off the screen). They would then need to undertake a long drag operation while

maintaining constant touch pressure.

Finally, as will be detailed next, I tested a feature that allowed a word to be

easily replaced by one of its morphological variants (e.g. replacing “accept” with

“accepted” or “acceptance”). This provided further error reductions (Morph+

119

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.7: Oracle word error rate (WER) as a function of cluster size in the confusion

network. The lines show improvement depending on how far the user is assumed to copy

words between clusters. Del assume no copying (same as Del in figure 5.6), Del+Copy1

assumes copying up to one cluster away, and so on. Del+CopyAll assumes copying

between any clusters.

Copy2+Del line, figure 5.6).

5.3.3 Word Substitution Prediction

When a user double-taps a word in the confusion network, the keyboard interface

opens. In order to try and minimize the need to type a word, I decided to

try and predict likely alternative words based on the word the user touched.

For example, if the user touched the word “constitutional”, the interface might

propose morphological variants of the word such as: “constitute”, “constitutes”,

etc. (figure 5.3).

Before I settled on displaying morphological variants, I considered several

possibilities. One possibility was to predict words that are acoustically close.

Acoustically close words have similar, but not identical, phone sequences in a

pronunciation dictionary. Another possibility was to propose word candidates

based on the preceding word (using a forward language model), or based on

the following word (using a backward language model). For details, on how I

120

5.3 Interface Description

Figure 5.8: Oracle word error rate (WER) as a function of how many word predictions

were given by the software keyboard. The different lines show the performance of using

different types of word predictions. Prior to entering the software keyboard, the confusion

network interface was assumed to have displayed five word alternatives plus the delete

box.

generated these word alternatives, see [146].

I again simulated a perfect user’s performance using my set of confusion net-

works. Note that in the actual interface, word predictions are shown only after

the user touches a word in the main display. The oracle is assumed to know

which of the various words in the main display to touch in order to best correct

the recognition result.

As shown in figure 5.8, providing more predictions provided greater error

reductions. The majority of the gains were seen by 5 predictions. This led to my

decision to use a single prediction row placed above the software keyboard (figure

5.3). The prediction row always includes a delete button on the left side. This

button allows the current word in the text entry box to be deleted. To the right

of delete, I include as many predicted words as would fit on the screen (typically

around 4 or 5 words).

While acoustic predictions performed best, they are also highly unintuitive to

users. As an example, “aback” is acoustically similar to “attack”. It would be

difficult for a user to know they should touch “aback” if they wanted “attack”.

121

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.9: The predictive software keyboard. The user has typed “parl” and the most

likely ways to complete the word are displayed in a row above the qwerty keyboard.

Language model predictions also suffer from being unintuitive. They depend on

surrounding context rather than the actual word the user touched. For these

reasons, I decided to use morphological variants. It is straightforward to explain

to users that a variant of a word which differs in ending, possessiveness, or gram-

matical number, can usually be obtained by touching the word and checking the

predictions.

5.4 Predictive Software Keyboard

Sometimes the user’s desired word may not appear anywhere in the interface. To

allow entry of arbitrary words, I added a predictive software keyboard.

5.4.1 Software Keyboard Design

Previous research suggests that pointing performance is severely degraded when

users are walking [37]. I therefore tried to make the typing keys as big as possible

(figure 5.9).

Another explicit design decision was to make the keyboard literal – each key

122

5.4 Predictive Software Keyboard

pressed is output immediately (as with an ordinary desktop keyboard). There

are some systems proposed in the literature that can improve typing precision

by inferring the intended letter keys rather than making a literal interpretation,

e.g. [62; 88]. However, these solutions are based on machine learning algorithms

and could introduce further recognition errors should their inferences be wrong.

Since I wanted to avoid cascading errors, I opted for a traditional keyboard to

provide a fallback method of text entry.

When a key was hit, its background color was changed to green and then

faded back to white over a 350 ms period. This provided feedback about the last

few keys hit without the user needing to look at the text entry box. Without

this feedback, it would be difficult for the user to know if a particular attempt to

type a letter had been successful or not.

5.4.2 Typing Prediction

I complemented the keyboard with typing prediction [40]. The keyboard suggests

the most likely words given what the user has typed so far (figure 5.9). It finds

predictions by searching a prefix-tree with 64K words. The prediction display is

populated with the most likely words (given a unigram language model) matching

the currently typed letters. The displayed predictions are sorted in alphabetical

order.

Typing prediction results were displayed on the screen 350 ms after the last

key press. This delay was introduced for two reasons. First, the prediction lookup

and screen redraw introduces lag which could interfere with users’ typing. Second,

a dynamically changing graphical interface might distract users from their typing

task.

As the user enters text, it is displayed in a text entry box. The user is allowed

to move the current cursor position in the box by using the left and right hardware

buttons on the N800 (the Left and Right buttons shown in figure 5.13). The

cursor position can also be moved by touching the desired position. Moving the

cursor allows arbitrary edits to words. For example, in figure 5.9, the user may

123

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

actually want to write “parole”. In this case, the user can move the cursor to the

left and then insert the missing letter “o”.

5.5 Mobile Speech Recognizer

Parakeet’s speech recognition was based on CMU Sphinx and used the Pock-

etSphinx decoder [74]. In this section, I give details of the recognition-related

components of Parakeet.

5.5.1 Acoustic Model

For fast performance, I opted for a semi-continuous acoustic model. My acous-

tic model was trained following the recipe described in [147]. I used an HMM

topology of 5 states with skip transitions and 256 codebook Gaussians. I trained

cross-word triphones using 39 CMU phones without stress markings plus silence.

I parameterized audio into a 51-dimensional feature vector consisting of 12 Mel-

frequency cepstral coefficients plus their short-term deltas, long-term deltas, delta

deltas, and three 0th cepstral power terms.

My US English model was trained on 211 hours of WSJ [5; 57] training data,

downsampled to 8 kHz. I used 8000 tied-states and the CMU pronunciation

dictionary.

My UK English model was trained on 16 hours of WSJCAM0 [125] training

data, downsampled to 8 kHz. I used 4000 tied-states and the BEEP pronun-

ciation dictionary. I mapped the BEEP phone set to the CMU phone set and

added missing words from the CMU pronunciation dictionary. From the original

gender-independent model, I created gender-dependent models using maximum

likelihood linear regression (MLLR) adaptation [96] of the means followed by

maximum a-posteriori (MAP) adaptation [59] of the means, mixture weights and

transition matrices.

124

5.5 Mobile Speech Recognizer

5.5.2 Audio Capture and Normalization

I captured audio on the N800 using a Blue Parrot B150 Bluetooth headset. I

chose this headset as it has a close-talking boom microphone and a long battery

life. Audio from the headset was sampled at 8 kHz and was obtained using the

GStreamer framework [2].

Normally, to improve recognition accuracy, the means of the acoustic features

observed in an utterance are subtracted from each frame of audio in that utter-

ance. This technique, known as cepstral mean normalization/subtraction [99],

normally uses the entire audio of an utterance. But in order to reduce the recog-

nition delay, Parakeet streamed audio to the recognizer as soon as the microphone

was enabled. As a consequence, I used cepstral mean normalization based on a

prior window of the user’s audio. When Parakeet starts, the cepstral mean vector

was initialized to a value based on my own audio recorded on the N800. This

initial mean vector was then adjusted to the user’s voice as Parakeet was used.

5.5.3 Language Model

I trained a trigram language model using: newswire text from the CSR-III text

corpus (222M words) [64], interpolated modified Kneser-Ney smoothing, and the

WSJ 5K word list (without verbalized punctuation). Since my test sentences

were taken from the CSR set-aside directory, I purposely chose the WSJ 5K

vocabulary in order to introduce a small number of out-of-vocabulary (OOV)

errors. I thought it was important to validate my design in the face of OOV

errors as they are typically unavoidable in real-world recognition tasks.

The language model was one of the dominating factors in the memory foot-

print of my system. Rather than training with n-gram count cutoffs, I instead

used no cutoffs and performed entropy-pruning [137] using a threshold of 5×10−8.

The resulting language model had 1.4M bigrams and 2.6M trigrams. As in [113],

I found entropy-pruning produced compact and well-performing models.

125

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

5.5.4 Mobile versus Desktop Recognition Setups

I compared the recognition performance of the US-English acoustic model de-

signed for mobile use (as described in section 5.5.1) versus a model designed for

use on a more powerful desktop computer. The desktop model differed in a num-

ber of ways. The desktop model used audio sampled at 16 kHz, parameterized

into a 39-dimensional feature vector consisting of 12 Mel-frequency cepstral coef-

ficients plus the 0th cepstral, deltas and delta deltas. The desktop models used a

3-state left-to-right HMM topology, 8000 tied-states and 16 continuous Gaussians

per state.

I tested the mobile and desktop acoustic models on a set of utterances taken

from three standard test sets (WSJ1 si dt 05, WSJ0 si et 05, WSJ0 si dt 05,

1253 total utterances). For recognition, I used the language model described

in section 5.5.3 and a WSJ 5K vocabulary. The test utterances had a very

low OOV rate of 0.1% using the WSJ 5K vocabulary. I tested both models

with two sets of parameters that controlled the recognizer’s search effort. The

Fast parameters aggressively pruned the recognizer’s search in order to speed

recognition. The Fast parameters were those used on the mobile device in the

user study (section 5.6). The Slow parameter set resulted in less pruning and

reflect settings that might be used on a desktop computer.

As shown in table 5.1, the mobile acoustic model provided the fastest recog-

nition, but was significantly less accurate than the desktop model. As evidenced

by the lower accuracy of the Fast parameter set, significant search errors were

incurred in order to speed recognition. Results were on a 3.3 GHz desktop com-

puter.

5.5.5 Lattice Processing

The word confusion networks used in Parakeet’s primary correction interface

were created from the recognition lattices returned by PocketSphinx [74]. There

were several problems with using Sphinx’s lattices to create confusion networks.

Firstly, while PocketSphinx was using a trigram language model for decoding, the

126

5.5 Mobile Speech Recognizer

Acoustic model Params. ×RT WER ± 95% CI

Mobile Fast 0.08 12.34 ± 0.76

Mobile Slow 0.25 9.93 ± 0.66

Desktop Fast 0.76 9.75 ± 0.64

Desktop Slow 1.51 7.74 ± 0.55

0 5 10 15

Table 5.1: Recognition performance using acoustic models designed either for mobile

or desktop use. I also varied the parameters that controlled pruning during the rec-

ognizer’s search. Confidence intervals were calculated using per-utterance bootstrap

resampling [17].

lattices exposed were only bigram lattices (i.e. edges could have multiple trigram

contexts). It is not clear why this is the case, perhaps due to limitations in the

history structures maintained by Sphinx.

Secondly, the lattices (particularly in challenging acoustic conditions), could

be quite large. Such large lattices, if left unchecked, could create unacceptable

memory- or processing-demands on a mobile device.

To address these problems, and also to produce the required confusion net-

work representation, the following processing steps were performed on the lattice

returned by PocketSphinx:

• Forward/backward reduction – Redundant lattice nodes were combined

with a single forward and backward reduction pass [159]. This process

maintains the same lattice paths and probabilities while making the lattice

smaller.

• Posterior pruning – Lattice nodes with a posterior probability less than a

fixed constant times the posterior probability of the best path were removed.

This removed low-probability hypotheses resulting in a smaller lattice. In

the experiments reported here, I pruned nodes with a probability less than

1× 10−6 times the best path probability.

127

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

• Compact trigram expansion – The lattice was expanded and rescored

using a compact trigram expansion algorithm [159]. This allowed the proper

trigram language model probabilities to be assigned to all paths in the

lattice.

• More posterior pruning – Another round of posterior pruning was per-

formed to reduce the size of the expanded lattice.

• Create word confusion network – A word confusion network was cre-

ated from the expanded lattice. To transform the lattice into a confusion

network, I used an algorithm based on the one implemented by SRILM [138].

• Prune word confusion network – The maximum size of each confu-

sion network cluster was limited to the number of words that Parakeet

intended to display. In addition, normally a confusion network contains nu-

merous clusters in which the “delete” hypothesis dominates (i.e. the recog-

nizer thought the cluster should not generate anything). Including all these

delete clusters would greatly increase the number of clusters in Parakeet’s

display. I removed delete clusters in which the delete word’s probability

exceeded a threshold of 0.9.

5.5.6 Speaker Adaptation Environment

Since I knew mobile recognition would be challenging, I wanted to improve ac-

curacy by adapting the recognizer’s acoustic model to the user’s voice and to the

Bluetooth microphone. Adaptation was done by having the user read a set of

sentences with known transcriptions. Typically, with a desktop dictation package

(such as Dragon), users perform this adaptation while in front of their desktop

computer.

When taking speech recognition mobile, the question arises whether it is worth

adapting the speech recognizer in a mobile, rather than a desktop environment.

Perhaps while using a speech application while mobile, a person’s voice changes

due to heavier breathing or due to competing attentional demands. It might be

128

5.5 Mobile Speech Recognizer

possible to obtain better recognition accuracy by collecting adaptation data in

the target environment.

Price and colleagues investigated this question in [120]. They had half of their

participants provide adaptation data while walking on a noisy treadmill, while

the other half provided data while seated in an office (with simulated treadmill

noise playing). While not statistically significant, they found that users who had

performed adaptation while on the treadmill had a lower word error rate (WER)

both when tested on the treadmill and when seated. They suggest that adapting

in a more demanding condition might improve recognition both while seated and

while walking (though they provide no insight into why this might be).

To address my concerns about how to best collect adaptation audio, I decided

to conduct a small, within-subject experiment. I had four US-English speakers

record three identical sets of adaptation data on the N800:

• Desktop – Indoors while seated. Recorded at a 16 kHz sampling rate on

a desktop with a wired Sennheiser PC 166 microphone.

• Indoor – Indoors while seated. Recorded at a 8 kHz sampling rate on the

N800 with a wireless Blue Parrot B150 microphone.

• Outdoor – Outdoors while walking. Recorded at a 8 kHz sampling rate

on the N800 with a wireless Blue Parrot B150 microphone.

For an adaptation set, I used 40 phonetically diverse sentences from the WSJ

corpus [118]. As a test set, speakers also recorded 125 sentences from the CSR-III

set-aside directory [94]. The test set sentences were recorded both indoors and

outdoors immediately after recording the corresponding adaptation set. The test

set sentences were not recorded using the desktop setup.

All speakers recorded the desktop adaptation set first (some on a previous

day). Speakers then either did the outdoor or indoor recording next (balanced

between speakers). Speakers used a custom prompt recording application (fig-

ure 5.10). The application presented sentences in sequence in a large font. No

recognition was performed during the sessions. Audio was simply recorded and

129

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.10: The application for collecting adaptation audio data from users. It displays

the text to be read as well as a waveform representation of the user’s last recording.

experiments conducted later using a desktop computer. The audio recorded using

the desktop setup was downsampled to 8 kHz before using it for adaptation.

As shown in table 5.2, performing any sort of adaptation was better than no

adaptation, reducing WER by about 20% relative. The desktop adapted models

performed worse than either the indoor or outdoor adapted models. In my subjec-

tive judgment, the audio quality of the desktop microphone was superior to that

of the Bluetooth microphone. But it appears that adapting to the microphone

used to collect the test audio was more important. I also found that recognition

outdoors was much harder than indoors, increasing WER by 45% relative.

The error rates of indoor and outdoor adapted models were very similar re-

gardless of whether they were tested on audio recorded in the same environment

or not. Since there was no significant accuracy difference, I decided to collect

adaptation data indoors. I also feel indoor adaptation is more practical as it al-

lows users to learn to dictate to the computer in a more comfortable and private

setting.

130

5.6 User Study

Adapt Test WER ± 95% CI

none indoor 15.5 ± 2.2

desktop indoor 13.0 ± 2.0

indoor indoor 12.4 ± 2.0

outdoor indoor 12.5 ± 2.0

none outdoor 21.2 ± 2.6

desktop outdoor 19.0 ± 2.4

indoor outdoor 18.0 ± 2.3

outdoor outdoor 17.9 ± 2.3

0 5 10 15 20 25

Table 5.2: The effect of adaptation environment on speech recognition word error rate

(WER). The bars show means and 95% confidence intervals. Confidence intervals were

calculated using per-utterance bootstrap resampling [17].

5.6 User Study

5.6.1 Participants and Apparatus

I recruited four participants (3 males and 1 female) from the university campus.

3 participants used the UK acoustic model and 1 participant used the US model.

Their ages ranged from 22 to 39. All participants were novice speech recognition

users.

Participants used a Nokia N800 Internet Tablet (figure 5.1). The N800 uses

an ARM1136 CPU clocked at 320 MHz. The physical dimensions of the device

(length×width× thickness) is 75× 144× 13 mm. The screen has a resolution of

800× 480 pixels and a physical size of 90× 55 mm.

Audio was recorded using a Blue Parrot B150 wireless headset microphone.

The built-in camera of the N800 was used to record video of the participant.

From the video, it was possible to tell whether the participant was looking at the

device or looking away.

131

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

In the outdoor condition, the N800 recorded participants’ location via a small

BlueNEXT BN909GR global positioning system (GPS) device which was physi-

cally affixed to the microphone headset. The GPS data was intended to provide

information about the participants’ walking speed during the study. I also wanted

to analyze if particular parts of the outdoor course were more subject to recog-

nition errors due to localized noise sources.

5.6.2 Method and Setup

Participants took part in a single two-hour session. Participants first trained the

speech recognizer for 10 minutes. Training consisted of reading 40 phonetically

diverse sentences from the WSJ corpus. They did this while seated in a quiet

office. Due to a technical problem, participants’ adapted acoustic models were

not used in the user study. The results presented here reflect recognition using a

speaker independent acoustic model.

After training, participants received a 5 minute introduction to using Para-

keet. They were then given 10 minutes to practice (with the experimenter avail-

able to answer any questions). On average, participants completed 14 sentences

during their practice session.

After the practice session, participants proceeded to either the seated indoor

condition or to the walking outdoor condition. In the outdoor condition, par-

ticipants walked circles around the Mott building of the Cavendish Laboratory.

One loop of the course was approximately 0.34 kilometers. Figure 5.11 shows the

GPS track of one participant in the outdoor condition. The outdoor condition

was carried out on a safe track and under constant supervision. While walking

around the track, participants led the way with the experimenter following at

about a one meter distance. The order of the conditions and the target sentences

received was balanced across participants. Each condition lasted approximately

30 minutes.

132

5.6 User Study

Figure 5.11: One participant’s GPS track around the Cavendish Laboratory. This

participant made about 8 loops around the building. The image is from Google Earth.

5.6.2.1 Test Sentences Used

I wanted to study the use of my interface given a “usable” level of recognition

errors. In my opinion, there is no point in testing speech correction interfaces at

high (say > 40%) WER. With so many errors, it would likely be better to not

use speech recognition in the first place. My target in these experiments was to

have a WER (before correction) of around 15%.

But I knew getting to 15% WER was going to be problematic. First, to obtain

reasonable real-time performance, I had to heavily prune the recognizer’s search.

This heavy pruning resulted in substantial search errors. Second, for practical

participant recruitment reasons, I wanted to allow UK-English speakers. Unfor-

tunately, I only had 16 hours of UK-English acoustic training data. This made

training an accurate acoustic model difficult. Third, I was using wireless narrow-

band audio collected in a potentially challenging outdoor acoustic environment.

So to help control recognition error rates, I chose sentences with a low per-

word perplexity of 18. These low-perplexity sentences should be easier to recog-

nize since they are well predicted by the language model. The sentences were

133

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.12: This screen presents the target sentences to the user. From left to right,

the bottom buttons are used to: 1) turn the mic on, 2) turn the mic off, 3) abort a

recognition, 4) skip to the next sentence, 5) move to the correction phase. If users

needed a reminder of the sentence during correction, they could return to this screen by

pressing the center button of the N800’s cursor pad.

taken from the set-aside directory of the CSR-III corpus and were excluded

from language model training. I chose sentences with between 8 and 16 words

(mean = 10.3, sd = 2.1).

I also wanted to test the interface in the face of out-of-vocabulary (OOV)

words. So I used a mismatched WSJ 5K vocabulary instead of the top words

in the CSR-III corpus. This caused 2.4% of words in my target sentences to be

OOV.

5.6.3 User’s Task

In both conditions, participants were presented with the target sentences on the

screen of the N800 in a large font (figure 5.12). When ready, participants pressed

a Mic on button, read the sentence, and then pressed a Mic off button. After a

recognition delay, the device beeped and flashed the screen. Participants then hit

a Correct button to enter the correction interface. After participants corrected

the sentence to the best of their ability, the Done button was pressed to move

to the next sentence. The Done button used a hardware button on the top of

134

5.6 User Study

Figure 5.13: Diagram showing the N800 hardware buttons used during the experiment.

the N800 (see figure 5.13). Participants could obtain a reminder of the target

sentence by pressing a Help button which used a hardware button in the center

of the N800’s cursor pad.

5.6.4 Data Collected

The N800 logged a wide variety of information about participants’ interactions.

This included low-level information such as touch trace data and high-level in-

formation such as what they wrote. In addition, I logged the audio utterances

recorded, the recognition lattices, and the word confusion networks.

The N800’s built-in camera recorded low resolution 160 × 120 video at 4

frames per second. Using the paired Bluetooth GPS receiver, the N800 also

recorded location information every few seconds while outdoors. The video and

GPS recording consumed less than 10% of the N800’s CPU.

135

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Condition Text WER ± 95% CI

indoor before correction 16.2 ± 4.5

outdoor before correction 25.6 ± 3.1

indoor after correction 1.2 ± 1.0

outdoor after correction 2.2 ± 1.7

0 10 20 30

Table 5.3: Novice users’ mean word error rates (WER) and 95% confidence intervals.

The confidence intervals reflect variance between individuals.

5.6.5 Novice Results

5.6.5.1 Error Rate

Word error rate (WER) was calculated as the word edit distance between the

target sentence and the written sentence divided by the number of words in the

target sentence. Within their 30-minute time limit (per condition), participants

completed about 41 sentences indoors (mean = 40.8, sd = 7.1) and 27 sentences

outdoors (mean = 27.3, sd = 4.1).

Table 5.3 shows the mean error rates obtained, indoors and outdoors. The

before correction error rate is the error rate of the speech recognizer’s output.

The after correction error rate is the error rate after participants corrected the

speech recognizer’s output. As can be seen in table 5.3, the recognizer’s error rate

was considerably higher outdoors than indoors. Users corrected most, but not all,

recognition errors. Users failed to correct more errors in the outdoor condition.

5.6.5.2 Entry Rate

Entry rate was calculated in words per minute (wpm). I used the standard con-

vention defining a “word” as five consecutive characters. The wpm rates reported

include the time spent correcting. For each condition, I computed two different

entry rates. The actual entry rate was based on the actual time interval between

136

5.6 User Study

Condition Entry rate wpm ± 95% CI

indoor actual 18.4 ± 1.8

outdoor actual 12.8 ± 0.6

indoor potential 36.6 ± 4.4

outdoor potential 25.6 ± 2.7

0 10 20 30 40

Table 5.4: Novice users’ mean entry rates in words per minute (wpm) and 95% con-

fidence intervals. The confidence intervals reflect variance between individuals. The

bottom two rows represent an upper-bound on performance assuming no recognition

delay.

the user pressing the Mic on button and pressing the Done button. The poten-

tial entry rate subtracted out the recognition delay (the time between pressing

the Mic off button and the recognition being available). This represents an

upper-bound on what users might achieve using a faster device or recognizer.

Table 5.4 shows the mean entry rates. As expected, participants were faster

indoors than outdoors. The recognition delays experienced by the novices drove

down their actual entry rates. As shown in the bottom two rows of table 5.4, the

novices had the potential to write much faster if they had not had to wait for

recognition to complete.

5.6.5.3 Correction Method Usage

Participants could correct errors either by using the word confusion network or

by using the software keyboard. If participants forgot the sentence they were

trying to write, they could invoke a help screen to display the sentence again.

Indoors, participants spent 62% of their correction time in the word confusion

network, 32% in the predictive software keyboard, and 6% in help. Outdoors,

participants spent 56% of their correction time in the word confusion network,

33% in the software keyboard, and 11% in help. Over a third of correction time

137

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.14: Proportion of times novice users touched or crossed a certain row in

the confusion network. Top indicates the row containing the 1-best words, Alt1-Alt4

indicate the alternative word rows (Alt1 being the topmost alternative, Alt2 being the

next alternative, etc.), and Delete indicates the delete button row.

was spent using the software keyboard. This demonstrates the importance of

implementing a good fallback correction method.

5.6.5.4 Word Confusion Network Usage

Figure 5.14 shows which buttons were used in the word confusion network inter-

face. The most common action was to use the confusion network to delete words

(56% of usage). When deleting, touch was used the most frequently (38% of all

usage) but crossing was also common (18% of all usage).

When substituting words, selections decreased in frequency as a function of

how far away the words were from the 1-best result (Alt1-Alt4 in figure 5.14).

This validated my computational results which showed the first few alternatives

were the most useful for corrections. Users most often selected single buttons

via touch. When they did select multiple buttons via a crossing gesture, they

primarily selected delete buttons. This showed aligning delete buttons in a single

row was a useful feature.

In the complete set of all outdoor sessions, novices wrote 273 sentences. Of

138

5.6 User Study

these, 82 had a completely correct 1-best result. Users completed 80 of these

completely correct tasks without making any unnecessary user interface actions

(such as touching a word or invoking the keyboard). In 27 of the 273 sentences,

the errors in the sentence could be corrected completely using only the word

confusion network. Users corrected 26 of these sentences using only the confusion

network. This shows that users took advantage of the confusion network whenever

possible rather than invoking the software keyboard.

Out of a total of 416 selections in the word confusion network, 374 (90%) were

touch actions and 42 (10%) were crossing actions. The feature allowing words to

be copied between clusters (figure 5.4) was not popular and was only used three

times.

5.6.5.5 Scrolling

Only 2% of recognition results fit completely on one screen. The average width

required to display an entire result was 1083 pixels (sd = 266). The display width

(minus the scroll buttons) was 700 pixels. So on average, participants needed to

scroll right at least once in order to inspect their sentence.

5.6.5.6 Software Keyboard Usage

While indoors, 17% of keyboard presses were the backspace key. While outdoors,

25% of keyboard presses were the backspace key. The increased frequency of

backspace outdoors indicates that walking degraded users’ ability to type accu-

rately.

In addition to spelling out a word, participants could also make use of the

typing prediction. In total, participants wrote 265 words with the keyboard.

When typing those words, participants used the typing prediction 54% of the

time. On average, participants typed about 3 letters (mean = 3.3) before selecting

a prediction. When participants did not use prediction, the desired word had been

displayed by the system 70% of the time. In these cases, I found on average the

139

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.15: Sample video frames from one of my outdoor sessions.

user only needed to type a few additional letters (mean = 1.6) to complete their

word. This is probably why they ignored the correct typing prediction.

5.6.5.7 User’s Speed and Location

I had hoped to use the GPS tracking data to analyze user’s walking speed during

the experiment. In addition, I wanted to see if recognition performance was influ-

enced by various point noise sources around the outdoor course. Unfortunately,

the GPS tracking information was not accurate or reliable enough. In any future

trial, a better way of tracking the user’s location would be helpful.

5.6.5.8 Video of User

A detailed analysis of the video taken during the study was not performed. I did

however look at the video to assess the camera’s usefulness in any future trial.

Despite the video’s low resolution and frames-per-second, it does appear possible

to judge whether the user is looking at the device or not (figure 5.15). This would

allow an analysis in which user’s attentiveness to the device could be measured

(similar to [114]).

140

5.6 User Study

Condition Text WER ± 95% CI

indoor before correction 8.5 ± 1.6

outdoor before correction 14.8 ± 2.2

indoor after correction 0.9 ± 0.4

outdoor after correction 1.5 ± 1.0

0 5 10 15

Table 5.5: Expert user’s mean word error rate (WER) and 95% confidence intervals.

The confidence intervals reflect the individual’s variance.

5.6.6 Expert Pilot Study

To illustrate the potential of speech as a viable mobile text entry method, I tested

my own performance using Parakeet. I performed the user study as described

previously but over seven sessions. Instead of a 30-minute time limit, I completed

45 sentences per condition. I used the US acoustic model. I have several years of

experience using speech recognition systems.

5.6.6.1 Expert Error Rate

Table 5.5 shows the word error rate before and after I finished correction. My

recognition WER was much lower than the novice users (indoors 8% versus 16%,

outdoors 15% versus 26%). While some of this difference may be due to my

speech recognition experience, another factor is my use of the US acoustic model.

With substantially more training data, the US model is typically more accurate

than the UK model (which 3 of the 4 novice participants used).

5.6.6.2 Expert Entry Rate

Table 5.6 shows my text entry rates in each condition, averaged over all sentences

in every session. Despite relatively long recognition delays, my text entry rates

were surprisingly good. While, as expected, walking outdoors slowed entry, it

141

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Condition Entry rate wpm ± 95% CI

indoor actual 24.4 ± 0.7

outdoor actual 19.6 ± 0.7

indoor potential 53.2 ± 1.9

outdoor potential 44.8 ± 2.0

0 20 40 60

Table 5.6: Expert user’s mean entry rates in words per minute (wpm) and 95% confi-

dence intervals. The confidence intervals reflect the individual’s variance. The bottom

two rows represent an upper-bound on performance assuming no recognition delay.

did so only by about 20%. Even with the recognition delays, I was able to

write at almost 20 wpm while walking. If I removed the time I spent waiting for

recognition, my writing speed over doubled to 45 wpm. While obviously having

no recognition delay is not realistic, some of these gains should be realized as

devices and recognizers improve.

Figure 5.16 show how entry rate varied in the face of recognition errors. As

can be seen by the number of points on the left side of figure 5.16a, many sen-

tences were recognized with 0% WER. Unsurprisingly, I usually completed these

sentences the fastest. However, as words errors started to occur, the decrease in

entry rate was not as dramatic as one might expect. For example, in the 10%

word error range, my entry rate dropped by only about 15% in both conditions.

As shown in figure 5.16b, removing the recognition delay allowed much faster

potential entry speeds.

5.6.6.3 Expert Correct Recognitions

In my expert pilot study, 48% of sentences were recognized completely correctly.

Figure 5.17a shows the distribution over writing speed on these utterances. Re-

moving the recognition delay (figure 5.17b), the entry rate became more sensitive

to the small differences in time it took me to confirm the recognition result. This

142

5.6 User Study

(a) Actual entry rate

(b) Potential entry rate

Figure 5.16: Expert’s utterances by entry rate (wpm) and word error rate (WER).

(a) shows actual performance of the expert, (b) shows potential writing performance

assuming no recognition delay. See figure 5.17 for a detailed view of utterances at 0%

WER.

143

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

(a) Actual recognition delay (b) No recognition delay

Figure 5.17: Distribution over the expert’s entry rate on utterances that were recog-

nized completely correct (0% WER). (a) shows actual performance, (b) shows potential

performance assuming no recognition delay.

suggests an opportunity to improve entry rates by optimizing the interface to

quickly confirm completely correct recognitions.

5.6.6.4 Expert Performance by Session

Figure 5.18 shows the text entry speed and recognition accuracy for each of my

expert sessions. My performance did not improve much over the course of the

seven sessions. This suggests that from the start of the pilot, I was driving the

interface about as fast as possible.

5.6.7 Participant Variability

Figure 5.19 shows the text entry rate and recognition WER for each participant

(both novices and expert). As expected, the expert is noticeably different from the

novices. Outdoors, there was a high degree of variability among the participants

in WER. This is likely due to the varying acoustic conditions at the time of each

session.

144

5.6 User Study

1 2 3 4 5 6 7

0
1

0
2

0
3

0
4

0

Session

A
c
tu

a
l
e

n
tr

y
 r

a
te

 (
w

p
m

)

(a) Actual entry rate, indoors

1 2 3 4 5 6 7

0
1

0
2

0
3

0
4

0

Session

A
c
tu

a
l
e

n
tr

y
 r

a
te

 (
w

p
m

)

(b) Actual entry rate, outdoors

1 2 3 4 5 6 7

0
2

0
4

0
6

0
8

0
1

0
0

Session

W
E

R
 (

%
)

(c) Before correction error rate, indoors

1 2 3 4 5 6 7

0
2

0
4

0
6

0
8

0
1

0
0

Session

W
E

R
 (

%
)

(d) Before correction error rate, outdoors

Figure 5.18: Expert’s text entry rates (top) and recognition error rates (bottom) for

each session. The box represents the interquartile range with the black line at the

median.

145

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

expert novice1 novice2 novice3 novice4

0
1

0
2

0
3

0
4

0

Participant

A
c
tu

a
l
e

n
tr

y
 r

a
te

 (
w

p
m

)

(a) Actual entry rate, indoors

expert novice1 novice2 novice3 novice4

0
1

0
2

0
3

0
4

0

Participant

A
c
tu

a
l
e

n
tr

y
 r

a
te

 (
w

p
m

)

(b) Actual entry rate, outdoors

expert novice1 novice2 novice3 novice4

0
2

0
4

0
6

0
8

0
1

0
0

Participant

W
E

R
 (

%
)

(c) Before correction error rate, indoors

expert novice1 novice2 novice3 novice4

0
2

0
4

0
6

0
8

0
1

0
0

Participant

W
E

R
 (

%
)

(d) Before correction error rate, outdoors

Figure 5.19: Text entry rates (top) and recognition error rates (bottom) for each

participant. The box represents the interquartile range with the black line at the median.

146

5.6 User Study

5.6.8 Analysis of Test Sentences

I chose “easy” test sentences with a low perplexity of 18. In my experiment,

novices had an indoor WER of 16% and 26% outdoors. So my choice of test

sentences was successful in obtaining a reasonable recognition error rate. A pos-

sible problem with these sentences is their error distribution may differ from what

you might get on a more difficult recognition task using more expensive recogni-

tion. For example, perhaps the low-perplexity sentences exhibit a much higher

percentage of completely correct recognition than is realistic.

To investigate this, I compared recognition from my user trial performed on

the N800 versus recognition of a collection of WSJ test sets performed on a

desktop computer. For the WSJ data, I used WSJ0: si et 05 si dt 05 si dt jr,

and WSJ1: si dt 05 si dt st/sjm si et st/sjm si et h1/wsj64k. To give a similar

average sentence length to the sentences in my user trial, I used WSJ utter-

ances with a length of 16 words or less (1035 utterances). Using a 20K language

model, these utterances had a perplexity of 155. I performed recognition using

the 20K language model and a speaker-independent US-English continuous wide-

band acoustic model. Decoding took about 2.4× real-time (2.4 times as long as

the input audio) on a 3 GHz desktop computer. During my user trials, the com-

bined novice and expert utterances had a WER of 15.6% with an OOV rate of

1.8%. In the desktop recognition experiment, the WSJ utterances had a WER of

17.9% with an OOV rate of 1.9%.

As shown in figure 5.20, the distribution of the utterance error rates was

similar between my user trial data and the WSJ test sets. This suggests that

my “easy” test sentences provided a realistic approximation of how the interface

might work in the future given a harder recognition task and more expensive

acoustic and language models.

147

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.20: Proportion of utterances with a given WER (bucketed in 5% increments).

The distribution of utterance WER on the harder WSJ test data using more expensive

recognition was broadly similar to what users in my experiment experienced on easier

test data using cheaper recognition.

5.7 Discussion

5.7.1 Limitations

5.7.1.1 Number of Participants

My novice user trial used only four people. My intention was not to collect

enough data to make strong statistical conclusions on writing speed, error rates,

etc. Rather, my goal was to test the interface and see how novices used the

interface. In addition, I wanted to gain experience in performing an experiment

in an actual mobile environment. In this respect, I think the small trial was

beneficial and provided important practical and design insights (to be discussed

in section 5.7.2).

My expert pilot study only used myself. Because I designed and built Para-

keet, I know the interface better than anyone. Additionally, I am an experienced

speech recognition user. Thus my results probably represent an upper-bound on

performance of the current design. A further longitudinal study is needed to

148

5.7 Discussion

investigate how fast other experts could write using Parakeet.

5.7.1.2 User’s Task Domain

Originally, I had hoped to have users transcribe email- or SMS-like messages. But

testing showed that recognition was too hard in these domains. This probably

stemmed from the lack of appropriate amounts of data to train language models

in the email or SMS domains. It may be possible to address this issue either by

finding appropriately large training corpora, or by using existing smaller corpora

to adapt a well-estimated newswire language model.

While having users transcribe sentences is the typical task in text entry stud-

ies, having users compose novel messages would be more realistic. In particular,

novice users may find it challenging to fluently dictate their own compositions.

Disfluent speech could make recognition even more challenging.

5.7.1.3 Recognition Delays

Due to severely limited computational resources, there were recognition delays

in the order of tens of seconds in my novice user trial (mean = 22 s, sd = 14 s,

figure 5.21). Overall, including recording time and lattice post-processing time,

the recognizer performed at 5× real-time. Some (pathological) utterances took

up to a minute for the system to recognize. These delays could have been reduced

at the expense of an increase in recognition errors, but I felt having a realistic

error rate was more important for the purposes of my study.

Despite the long recognition relays, my participants’ mean (corrected) entry

rate of 13 wpm walking outdoors is still about as fast as the text entry rate

users obtain when sitting down and typing using T9 predictive text after several

sessions [162].

Figure 5.22 shows the possible improvements in writing speed with varying

reductions in recognition delay. While in practice, there will always be some

149

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

Figure 5.21: Recognition delays experienced by novice users (both indoors and out-

doors).

recognition delay, faster devices and recognizers should allow a good part of these

gains to be realized.

To show the potential on a much faster device, I tested the participants’ audio

on a 3 GHz desktop computer. The recognizer used the same acoustic models

and configuration as in the user trials. I simply streamed the audio in real-time

from a file rather than from a microphone. The desktop computer completed

recognition after the last audio was received with a delay of only about half a

second. Essentially the desktop computer was doing the speech decoding as fast as

the audio arrived. The short delay at the end reflects post-processing operations

that required the full recognition result.

A possible problem with the conjectured improvements based on faster recog-

nition is that changes in the length and variability of recognition delays could re-

sult in different human performance characteristics. For example, perhaps users

are using the delays to mentally rest or attend to their physical environment. A

rapid interface with no delays might be too stressful and actually penalize per-

formance. On the other hand, short delays might allow users to better remember

what they are writing and thus benefit performance. Further research is needed

to better understand the impact that delays have on human performance using

a mobile interface.

150

5.7 Discussion

Figure 5.22: Potential text entry rates if recognition delays had been shorter.

5.7.1.4 Microphone Used

The Bluetooth microphone I used for my experiments was large and bulky. I

chose this microphone in order to give the speech recognizer a good signal from a

close-talking boom microphone. Further work is needed to see how more typical,

compact headsets would perform.

5.7.1.5 Environmental Factors

My novice trials took place during a period of windy weather. Using data from

a weather station on a nearby building, the average wind speed during my user’s

outdoor condition was 13 knots, gusting to 28 knots. At this location, the typ-

ical average wind speed is 4 knots, gusting to 12 knots. I believe the strong

wind caused a higher than normal level of recognition errors in the outdoor con-

dition. During the experiment, participants themselves noted how recognition

errors seemed to increase when they spoke a sentence while on a windier section

of the course.

Currently Parakeet’s recognizer has no explicit noise robustness features. Such

features would be helpful before testing Parakeet in more challenging acoustic

environments (e.g. walking around a busy town center).

151

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

In addition, one trial took place on a sunny day and that participant had

difficulty seeing the screen over parts of the course. A mobile device that is more

readable in direct sunlight would make outdoor trials easier.

5.7.2 Design Implications

5.7.2.1 Review Screen

A large proportion of the sentences were recognized as completely correct. Despite

this, participants were forced to enter the correction interface. Participants then

had to scroll right in order to verify that the entire utterance was correct. It may

be advantageous to first show a simple screen reviewing the entire recognition.

The user could then either accept the sentence, or press on the first error to start

correction at that location.

5.7.2.2 Easy Fallback

I noticed that for some utterances, the speech recognizer gave results with so

many errors as to make correction an exercise in deleting everything and typing

the entire sentence. Parakeet should better support this circumstance, allowing

users to fallback to keyboard-only entry without having to explicitly erase each

word first.

5.7.2.3 High Contrast

I noticed that participants sometimes found it hard to read the screen while

outdoors because of glare. The user interface could benefit from a redesign that

puts more emphasis on high contrast.

152

5.7 Discussion

5.7.2.4 More Efficient Use of Screen Real Estate

I found that participants sometimes had trouble with target selection despite the

fact that I designed buttons to be large. Buttons, particularly in the word con-

fusion network display, could benefit from being larger. Given that participants

rarely used the lower alternative word rows in the confusion network, it may be

worthwhile removing a row or two to provide additional space for larger buttons.

5.7.2.5 Improved Speech Recognition

Speech recognition delays accounted for about 50% of users’ entry times. As mo-

bile devices get faster, this recognition delay will be reduced significantly. Delays

might also be reduced by using network or distributed speech recognition [141].

In distributed or network speech recognition, the mobile device offloads most or

all of the speech recognition work to a more powerful computer. I will use such

an approach with Parakeet in the user study described in chapter 6, section 6.9.

Recognition speed will have a very large impact on the practical entry rates

achievable by continuous speech recognition on a mobile device. Improvements

in recognition accuracy will also clearly be beneficial.

5.7.2.6 Device Improvements

The N800’s battery is specified to last 3.5 hours while “browsing”. I found that

while using Parakeet, the battery lasted a substantially shorter amount of time

(around 45 minutes). Power consumption and battery life would need to improve

to make mobile speech recognition practical for sustained text entry.

The N800 can only record audio at a sampling rate of 8 kHz. I found this

degraded recognition significantly compared to 16 kHz audio. Mobile devices

which are intended to use speech recognition would benefit from wideband audio

capture. In my informal tests, there was minimal additional computational cost

recognizing wideband audio.

153

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

The N800 has 128MB of main memory (with additional swap space on a

removable memory card). By using a compact acoustic and language model, I

was able to keep Parakeet’s memory demands to around 100MB. But a more real-

world recognition task would require a larger language model. A device with more

memory would clearly be advantageous. In addition, there are probably ways to

reduce Parakeet’s memory footprint. For example, Olsen et al. [113] implemented

a Chinese Mandarin recognizer on a N800 using only 10MB of memory.

5.8 Related Work

Ogata and Goto [112] also used a word confusion network as a basis for a speech

correction interface. Their system was tested on a desktop and benchmarked

against conventional speech correction using a mouse and keyboard. They found

that for entering Japanese text, the confusion network interface shortened entry

time by 31%.

In relation to their work, my work incorporates several novel aspects:

• Word candidate order – They ordered all word candidates (including

delete buttons) strictly by probability. I changed this so all delete buttons

were in the bottom row. This was done for consistency and also to allow

contiguous errors to be deleted in a single swipe.

• Copying – I added the ability to copy words between clusters.

• Keyboard fallback – I provided a fallback correction mechanism based

on a predictive software keyboard.

• Mobile design – I designed and tested my interface on a mobile touch-

screen device both indoors while seated and outdoors while walking.

Kurihara et al. [91] built upon the correction interface in [112]. In [91], an

instructor’s handwriting was combined with speech recognition results to provide

a confusion network correction interface. Similar to my interface, their system also

supports crossing-based selection in the confusion network. They evaluated their

154

5.8 Related Work

interface by having participants give or receive fake classroom lectures. Their

system supported the fake instructors by automatically generating 22–70% of

their pen strokes. Unlike Parakeet, their system required some use of handwriting

recognition in order to select from the confusion network. Their goal was also

very different. They wanted to allow quick output of a portion of the instructor’s

speech in order to aid student note taking. This is different from the verbatim

output needed by people dictating to Parakeet.

Huggins-Daines and Rudnicky [75] demonstrated a touch-screen error correc-

tion technique for speech recognition. It allowed users to select a region in the

1-best result. Users could expand or contract the selected region using a touch

interface. The user then selected an alternative hypothesis appearing in the time

vicinity of the selected region. Unlike Parakeet, this interface initially only dis-

played the 1-best result and did not provide a fallback method of text entry. No

user trial was reported.

Karpov et al. [83] tested a dictation interface on a Nokia mobile phone. Their

system used isolated-word recognition (users had to pause after every word).

They tested users’ speed at entering short messages. The study was conducted

indoors and messages had to be completely corrected. Corrections were done by

selecting from a list of alternative words, repeating recognition, or switching to

keypad input. Their users were able to write at 11 wpm using the isolated-word,

speaker-dependent speech recognition.

Shuhm et al. [139] used handwriting to correct recognition errors. Their in-

terface ran on a desktop and used the research recognizer JANUS. Novices had

a (corrected) entry rate of 5 wpm using pen correction and 7 wpm using mouse

and keyboard correction. The participants’ initial utterances had a WER of 25%.

For comparison, at a similar WER of 26%, my novices wrote at 13 wpm while

walking around outdoors.

Several studies have simulated mobile speech recognition on a desktop com-

puter. Fischer et al. [51] tested multitap and stylus soft keyboard correction of

text entered via speech. Their interface ran on a desktop computer and used IBM

ViaVoice for recognition. To simulate mobile use, they added a 10 second delay to

155

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

all speech recognition events. Novices had a mean text entry rate of 22 wpm with

multitap and 24 wpm using the soft keyboard. These entry rates are the best

mean of any of the 4 different target texts used. Fischer et al. don’t report their

before correction WER. For comparison, my novices averaged 18 wpm indoors

with a recognition delay of 18 seconds at a WER of 16%.

In another study simulating mobile recognition on a desktop, Cox and Walton

[36] compared user performance writing short messages using multitap, predictive

text, and speech. Participants used a desktop computer with an emulated mobile

phone interface. Speech recognition used Nuance Dragon NaturallySpeaking 7.

Participants were fastest using keys to navigate to the message entry interface

and then using speech for text entry. Speech was the fastest (51 uncorrected

wpm), followed by predictive text (19 uncorrected wpm), and finally multitap (13

uncorrected wpm).

Price et al. [120] investigated the effect that motion has on speech recogni-

tion accuracy. They had participants use a desktop commercial recognizer (IBM

ViaVoice) both while seated and while walking on a treadmill. Participants were

asked to compose short responses to questions. Participants did not perform cor-

rection and could not see their recognition result. Price et al. suggest adapting to

a speaker’s voice while walking may improve recognition both seated and walking.

In my testing, I found no advantage to doing this (see section 5.5.6 for details).

5.9 Conclusions

In this chapter, I presented Parakeet: a touch-screen interface for continuous

speech recognition on mobile devices. To my knowledge, this is the first explo-

ration of text entry via continuous speech recognition in a truly mobile envi-

ronment. My design of Parakeet was guided from two directions. First, I took

advantage of empirical and qualitative findings in the HCI literature. Second,

wherever possible, I adopted an engineering-driven design where I optimized the

user interface based on the system’s predicted behavior on empirical data. In

Parakeet, I introduced several novel user interface enhancements. For example,

156

5.9 Conclusions

I allowed words to be copied between confusion network clusters. I allowed easy

replacement of a word with one of its morphological variants. I also added a

fallback entry method via a predictive software keyboard.

The design of Parakeet was validated by a user study. I let participants use

Parakeet both seated indoors and while walking outdoors. To my knowledge, no

speech recognition text entry method has been tested with participants actually

walking around. Among other things, the user study confirmed that word confu-

sion networks were a useful representation for users. When the intended sentence

was in the word confusion network, users were able to find and select it 96% of

the time. I also showed that participants used the Parakeet crossing interface

about 10% of the time, demonstrating that crossing was a useful complementary

feature. Lastly, I made some practical design recommendations based on lessons

learned in my user study.

My novice and expert user studies demonstrated that speech may be a sur-

prisingly competitive mobile text entry method. Including the time it took to

perform corrections, my novices were able to write at 18 wpm indoors and 13 wpm

while walking outdoors. As an expert user, I was able to write at 24 wpm indoors

and 20 wpm while walking outdoors. These rates are comparable to the 16 wpm

users achieved with T9 while seated after 15 indoor sessions [162].

However, given the large recognition delays experienced in my study, users

may have been faster simply typing on the software keyboard. For comparison,

in [103], users wrote using a software keyboard at 28 wpm initially and 40 wpm

after 400 minutes of practice. I believe that Parakeet could achieve comparable

or faster entry rates if recognition delays were reduced. Limiting delays, novices

in my study could have written at 37 wpm and my expert at 53 wpm. This

demonstrates the potential a well designed interface like Parakeet has for making

speech a very fast method for entering text while mobile.

157

CHAPTER 5. TOUCH-SCREEN MOBILE CORRECTION

158

Chapter 6

Open Vocabulary Recognition for

Web Search

6.1 Overview

Searching the web by typing queries into a search engine like Google is a common

activity. But typing queries using a keyboard can be difficult on a mobile device

or for people with disabilities. In this chapter, I investigate how to enter web

search queries using speech recognition.

Recognition of spoken search queries (henceforth search queries) is challeng-

ing for a number of reasons. First, search queries are not like normal English

sentences. They tend to be short, have a flexible ordering of words, and draw

words from a diverse and large vocabulary. This makes it challenging to construct

good language models and pronunciation dictionaries for use in recognizing search

queries. Second, constructing good models and dictionaries is hindered by the

lack of web-search specific training materials. Third, web search is a moving tar-

get with new words and phrases appearing all the time. A recognizer relying on a

fixed vocabulary would need frequent updating. Finally, given all the challenges,

recognition errors are bound to occur. I argue that a good correction interface is

required to help users complete their search task efficiently.

159

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

Figure 6.1: The voice web search correction interface. The user has spoken the query

“quadrajet vacuum diagram”. The query contains the out-of-vocabulary word “quadra-

jet”. In the interface shown, errors are corrected by selecting alternative words from each

column. In the first column, the recognizer has proposed the novel words “quadrature”,

“quadrjet”, “quadr”, “quadric” and “quadrajet”.

I will describe the techniques and resources I used to address these challenges.

I will demonstrate their utility in a system that allows users to speak and cor-

rect search queries on a mobile device. The system recognizes novel words and

supports correction via a simple touch interface (figure 6.1).

I will use search queries obtained from typed web searches. I did this for

practical reasons. At least currently, typed search query data is easier to obtain

and much more plentiful. While there may be interesting differences between

typed and spoken search queries, I do not investigate these differences here.

This chapter is structured as follows. First, I discuss why large, search-specific

vocabularies are needed. I show that existing pronunciation dictionaries are in-

sufficient to cover the vocabulary indicative of search queries. Second, I provide

an overview of the joint multigram model. This model forms the basis for han-

dling large vocabularies by allowing phone sequences to be inferred from letter

sequences. I detail experiments that show how to make the joint multigram model

perform well. I also investigate several new techniques for improving the model’s

160

6.2 The Large Vocabulary Problem

performance. Third, I describe how the joint multigram model can be used to

recognize novel words never seen in the training data. I extend this method to

allow novel words to appear alongside their in-vocabulary competitors in a word

confusion network [104]. Fourth, I describe a corpus of search queries I collected

to study the problem of spoken search queries. Using the corpus, I build a sys-

tem that can recognize spoken queries effectively. Finally, I present results of a

formative user study in which participants spoke and corrected search queries on

a mobile device while walking.

6.1.1 Publication Note

The work presented in this chapter was published in part in the papers “Combin-

ing Open Vocabulary Recognition and Word Confusion Networks” at the IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP

2008) [149] and “Recognition and Correction of Voice Web Search Queries” at

the International Conference on Spoken Language Processing (ICSLP 2009) [154].

Sections 6.7, 6.8, and 6.9 were joint work with Per Ola Kristensson.

6.2 The Large Vocabulary Problem

One way to handle the diverse and large vocabulary of search queries is to increase

the size of the recognizer’s fixed vocabulary. In the simplest case, words are added

from sources that have pronunciations for each word. But such sources are limited

in size and may not match the types of words used in search queries. For example,

the CMU pronouncing dictionary [25] has 125K English words, but lacks many

common search terms such as “ebay” and “firefox”.

Of course words can be added from sources besides a pronunciation dictionary.

For example, words can be added from a collection of past search queries or

from words appearing in Wikipedia articles. So what effect does allowing words

without pronunciations have on a vocabulary’s ability to cover words seen in

search queries? To find out, I collected a set of 3K queries (9.5K words) from a

161

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

 0

 2

 4

 6

 8

 10

 12

 14

 50 100 150 200 250 300

O
O

V
 ra

te
 (%

)

Vocabulary size (K)

CMU
Search

Figure 6.2: Percent of out-of-vocabulary (OOV) words in a test set of search queries

using two different vocabulary sources. CMU used only words from the CMU dictionary.

Search used words that appeared in a corpus of search queries.

web search engine [1]. While users had typed these queries, the queries provide

an approximation of the sorts of things a user might say to a spoken web search

interface. I proofread the queries to correct obvious typos. I also removed garbage

and expanded abbreviations.

I built vocabularies of varying size using the most frequent words in a corpus

of search queries (described in section 6.7). I restricted one set of vocabularies

to use only words in the CMU dictionary (denoted CMU) while the other set

could use any word (denoted Search). As shown in figure 6.2, using the Search

vocabularies substantially reduced the OOV rate from 7.1% to 2.6%.

However, there are two problems with using the Search vocabularies. First,

pronunciations will be needed for many of the words. For example, at a vocabu-

lary size of 100K, 51% of words from the search query corpus had no pronunciation

in the CMU dictionary. I address this first problem in sections 6.3 and 6.4 where

I describe how I automatically generated pronunciations for words not in the

dictionary.

The second problem is that even if a large vocabulary is used, there is still

a remaining number of OOV words. These OOV words might be caused by a

mismatch between the training data and the user’s queries or by new vocabulary

162

6.3 Letter-to-Phone Conversion

entering the language. I address this second problem in sections 6.5 where I

describe how I allowed recognition of novel words that have never been seen

before.

6.3 Letter-to-Phone Conversion

In this section, I describe the joint multigram model. This model serves as the

basis for expanding the recognizer’s vocabulary size by inferring a word’s phone

sequence from its letter sequence. It will also serve as the basis for recognizing

novel words that are outside the recognizer’s normal vocabulary.

The joint multigram model was developed by Deligne et al. [43; 44]. The idea

is to learn a set of likely pairings between the written, grapheme unit sequences

of a language and its spoken, phoneme unit sequences. For example, in English

some common pairings include:

Grapheme
Phonemes

(
ing
ih ng

)(
ation
ey sh ah n

)(
sch
sh

)

As in Bisani and Ney [16], I refer to these pairings as graphones. Graphones

can be automatically learned from a pronunciation dictionary consisting of words

and their corresponding phone sequences. In the remainder of this section, I

describe the important details of the joint multigram model. A full derivation of

the model appears in appendix C.

6.3.1 Graphones and Model Intuition

A graphone Gi is made up of a co-sequence of letters and phones:

Gi =

(
`1, `2, ..., `j
ρ1, ρ2, ..., ρk

)
.

Let ` (Gi) denote the letter sequence `1, `2, ..., `j of a particular graphone Gi

and let ρ (Gi) denote the phone sequence ρ1, ρ2, ..., ρk of Gi.

163

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

Graphones are restricted to some minimum and maximum number of letters

and phones. For English, I used the same range for both letters and phones. I

denote a model by its range. For example, a 1–2 model consists of graphones

having 1 or 2 letters and 1 or 2 phones. It is also possible to have models in

which graphones have 0 letters or 0 phones (but not both).

An entry in a pronunciation dictionary consists of a letter sequence and its

corresponding phone sequence. The model assumes dictionary entries do not have

any markings denoting which of a word’s letters are associated with which of its

phones.

The joint multigram model is a generative model. To create a dictionary

entry, graphones are assumed to be drawn independently from an inventory of all

possible graphones. A dictionary entry is created by concatenating the letter and

phones of the drawn graphones. The concatenation is continued until a graphone

with the end-of-word symbol “•” is drawn. Before training, this end-of-word

(EOW) symbol is implicitly added to the end of every training entry’s letter

sequence.

Given a graphone inventory, a particular dictionary word may have multiple

possible segmentations. For example, under a 1–2 model, the entry for “cat” has

the following 5 segmentations:(
ca
k ae

)(
t •
t

)
,

(
ca
k

)(
t •
ae t

)
,

(
ca
k

)(
t
ae

)(
•
t

)
,(

c
k

)(
at
ae

)(
•
t

)
,

(
c
k

)(
a
ae

)(
t •
t

)
.

Informally, the job of the joint multigram model is to look through the pos-

sible segmentations of all words in the dictionary and decide how “useful” each

graphone is for generating the dictionary. Probabilities are then assigned to each

graphone according to its “usefulness”. Given the inventory of graphones and

their associated probabilities, it is possible to infer a phone sequence given a

letter sequence (and vice-versa).

Table 6.1 gives some examples of the top graphones learned by a 1–5 model.

As can be seen, the model has learned some common English suffixes and prefixes.

164

6.3 Letter-to-Phone Conversion

Ranks Graphones

1–5

(
e r •
er

) (
i n g •
ih ng

) (
s

s

) (
s •
z

) (
t

t

)

6–10

(
m

m

) (
n

n

) (
b

b

) (
’ s •
z

) (
d

d

)

11–15

(
y •
iy

) (
l

l

) (
p

p

) (
t •
t

) (
f

f

)

16–20

(
e r

er

) (
m a n •
m ah n

) (
e r s •
er z

) (
a •
ah

) (
r

r

)

21–25

(
i n

ih n

) (
s •
s

) (
g

g

) (
c

k

) (
h

hh

)

26–30

(
r e

r iy

) (
e d •
d

) (
t i o n •
sh ah n

) (
e n •
ah n

) (
o •
ow

)

Table 6.1: The top-30 graphones learned by a 1–5 model. The symbol • denotes the

end-of-word symbol.

165

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

6.3.2 Parameters, Training Data, and Segmentations

A graphone inventory consists of all possible graphones given the letters and

phones of a language (subject to the model’s length range). Each graphone Gi

in the inventory has an associated unigram probability P (Gi). If there are I

graphones in the inventory, the parameters θ of the joint multigram model are:

θ = {G1, ..., GI , P (G1), ..., P (GI)} . (6.1)

For conceptual clarity, the learning process is viewed as the search for opti-

mal probabilities using the set of all possible graphones. The size of this set is

exponential in the length-range of the model. During initialization, a practical

implementation represents only graphones that were actually seen in the training

data (see section 6.4.3).

The model’s training data D consists of a pronunciation dictionary with N

entries:

D = {D1,D2, ...,DN} . (6.2)

The nth entry in the dictionary has a letter sequence denoted Xn and a phone

sequence denoted Y n:

Dn =

(
Xn

Y n

)
. (6.3)

Given a particular graphone inventory, dictionary entry Dn could have been

generated by 0 or more possible graphone sequences. Let Sn denote the vector

of the |Sn| possible segmentations for dictionary entry Dn:

Sn = {Sn1,Sn2...,Sn|Sn|} . (6.4)

Sns is the sth segmentation of the nth dictionary entry. Sns is a vector of the

|Sns| graphone indices that make up the segmentation:

Sns = {Sns1, Sns2, ..., Sns|Sns|} (6.5)

166

6.3 Letter-to-Phone Conversion

In order for Sns to be a valid segmentation, the graphone indexes in Sns must

exactly produce the dictionary entry’s letter and phone sequences:

Xn = ` (GSns1) t ` (GSns2) t ... t `
(
GSns|Sns|

)
(6.6)

Y n = ρ (Gsns1) t ρ (GSns2) t ... t ρ
(
GSns|Sns|

)
(6.7)

where t denotes concatenation of letter or phone sequences.

6.3.3 Model Assumptions

Graphones in a sequence are assumed to be independent:

P (Sns|θ) =

|Sns|∏
g=1

P (GSnsg |θ) . (6.8)

This independence assumption will be loosened later by the addition of an

n-gram language model (see section 6.3.7). The probability of a dictionary entry

is the sum over all possible graphone sequences that exactly generate an entry’s

letters and phones:

P (Dn|θ) =

|Sn|∑
s=1

P (Sns|θ) . (6.9)

Training examples from the dictionary are assumed to be independent. Thus

the overall probability of the training data is:

P (D|θ) =
N∏
n=1

|Sn|∑
s=1

|Sns|∏
g=1

P (GSnsg |θ) . (6.10)

6.3.4 Reestimation Formula

A local optimum for the model parameters θ can be found using expectation

maximization (EM). Here I provide just the final result; for a complete derivation

see appendix C. The reestimation uses the responsibility γ(zns) which is the degree

to which the sth segmentation explains the nth training example:

167

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

γ(zns) =

∏|Sns|
g=1 P (GSnsg |θ)∑|Sn|

s=1

∏|Sns|
g=1 P (GSnsg)|θ)

. (6.11)

The responsibility is how likely a particular segmentation is in comparison

with all other segmentations for that dictionary entry. Using the responsibility,

the reestimation formula at time step (t+ 1) is:

P (t+1)(Gm) =

∑N
n=1

∑|Sn|
s=1 γ

(t)(zns)C(Gm|Sns)∑N
n=1

∑|Sn|
s=1 γ

(t)(zns)C(Sns)
(6.12)

where C(Gm|Sns) is how many times graphone Gm appears in segmentation Sns

and C(Sns) is how many graphones are in that segmentation.

Thus at each training iteration, a particular graphone’s probability is updated

based on how often that graphone appears in all segmentations of the training

data. These appearances are weighted according to how likely each particular

segmentation was.

6.3.5 Viterbi Training

The reestimation formula (6.12) requires a summation over all possible graphone

sequences for each training example. A cheap and cheerful form of training uses

just the most likely graphone sequence for each dictionary entry. Let S(t)
n∗ be the

most likely graphone sequence for Dn at time step t:

S(t)
n∗ = argmaxSns∈SnP (Sns|θ(t)) . (6.13)

The responsibility γ(zns) is set to 1 when Sns = S(t)
n∗ and 0 otherwise. The

reestimation formula (6.12) for Viterbi training is defined as:

P (t+1)(Gm) =

∑N
n=1 C(Gm|S(t)

n∗)∑N
n=1C(S(t)

n∗)
. (6.14)

In Viterbi training, the probability of the data is improved by reestimating

the probabilities using the relative frequency of how often each graphone ap-

168

6.3 Letter-to-Phone Conversion

pears in the most-likely segmentation of the training examples using the previous

iteration’s parameters.

6.3.6 EM Training

The reestimation formula (6.12) can efficiently be calculated using the forward–

backward algorithm. By first introducing a forward variable α and a backwards

variable β, the summation over all possible segmentations of each dictionary entry

can be replaced by a sweep over all letter and phone positions. Here I provide

the final result; for a full derivation see appendix C.2.1.

The forward variable αn(x, y) accounts for the probability from the start up

to and including the xth letter and yth phone of the nth dictionary entry:

αn(x, y) = P ((Xn)x1 , (Y n) y1 | θ) . (6.15)

Similarly, the backwards variable βn(x, y) accounts for the probability of ev-

erything after the xth letter and yth phone of the nth dictionary entry:

βn(x, y) = P
(

(Xn)
|Xn|
x+1 , (Y n)

|Y n|
y+1 | θ

)
. (6.16)

The reestimation formula used during forward-backward training is:

P (t+1)(Gm) =

∑N
n=1

1

β
(t)
n (0,0)

∑|Xn|
x=1

∑|Y n|
y=1 α

(t)
n (x− q, y − r)P (t)(Gm)β

(t)
n (x, y)δx,y,m∑N

n=1
1

β
(t)
n (0,0)

∑|Xn|
x=1

∑|Y n|
y=1 α

(t)
n (x, y)β

(t)
n (x, y)

(6.17)

where graphone Gm has q letters and r phones and δx,y,m is an indicator variable

which is one if the letters and phones immediately preceding position (x, y) match

graphone Gm.

6.3.7 Modeling Graphone Dependency

The joint multigram model makes the assumption that graphones in a sequence

are independent (6.8). To model dependency between graphones, the graphones’

169

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

unigram probabilities are used to find the most likely segmentation of each entry

in the training dictionary using (6.13). These segmentations are then used as

training data for a standard n-gram language model in which graphones in a

sequence are dependent on a prior window of M − 1 graphones:

P (Sns|θ) =

|Sns|∏
g=1

P (GSnsg |GSns(g−1)
, ..., GSns(g−M+1)

,θ) . (6.18)

The training of a graphone n-gram language model can be done using a stan-

dard toolkit such as SRILM [138]. I found that training a well-performing gra-

phone language model was not as simple as training a standard word language

model. In section 6.4, I highlight the important details about how to train a

well-performing graphone language model.

6.3.7.1 Search Using a Graphone Language Model

Using the graphone language model, a word’s most likely phones can be found

from its letters (and vice-versa). This is done by finding the most likely graphone

sequence consistent with the known symbols. I implemented this search using

the token passing paradigm [172]. In token passing, virtual tokens explore the

search space of possible hypotheses. Each token keeps tracks of its probability, its

location in the letter and phone sequence, and its history of previous graphones.

Using token passing, either a 1-best or n-best search is possible. For 1-best

search, I found it was computationally feasible to do an exact search. In order to

be tractable, care must be taken to prune tokens during an exact search. This is

because a graphone inventory may include graphones that have no letters or no

phones. These graphones can be added to a search hypothesis without consuming

symbols in the search’s known symbol sequence. Without pruning, the search

could explore segmentations involving an infinite number of graphones.

I implemented two methods of pruning tokens while maintaining an exact

search. The first method was to prune a token with a probability worse than the

current best result. The second method was to prune a token at a given letter

170

6.4 Letter-to-Phone Experiments

and phone position if its probability is worse than a previous token to visit that

same position. In the second form of pruning, the previous token and the current

token must have identical language model context in order for pruning to occur.

If the language model backed off, a token’s language model context was taken

to be the shorter, backed-off context. This last point was important in order to

keep the exact search tractable when using long-span language models.

It is also possible to find the n-best most likely phone sequences given a letter

sequence. This is useful if multiple pronunciation variants are desired for a word.

It might also allow more accurate phone sequences to be inferred by summing over

alternate segmentations that share the same phone sequence. In the case of an n-

best search, I did not attempt to guarantee finding exactly the top-n hypotheses.

I pruned the n-best search by limiting the number of tokens at a particular letter

and phone position. I also pruned tokens that were too improbable compared to

the best previous token to visit a particular letter position.

6.4 Letter-to-Phone Experiments

In this section, I describe experiments showing how I achieved state-of-the-art

letter-to-phone conversion using graphones. To my knowledge, this work provides

the first detailed comparison of how different aspects of graphone language model

training (such as smoothing, count cutoffs, and iterative training) affect letter-

to-phone performance. I also experiment with a new search strategy based on

summing over multiple possible graphone segmentations.

6.4.1 Experimental Setup

My experiments used the CMU dictionary, removing words with letters other than

A–Z and apostrophe. I retained multiple pronunciations per word. I randomly

split the dictionary using 70% for a training set, 10% for a development test

set, and 20% for an evaluation test set. I used a random split to be comparable

with past work that also used a random split (e.g. [19; 56]). When I performed

171

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

graphone model size

LM size 0–1 0–2 0–3 1–2 1–3

2-gram 18.76 10.19 8.70 10.84 9.83

3-gram 10.22 7.67 8.40 9.03 9.59

4-gram 7.61 7.55 8.40 8.97 9.58

5-gram 7.00 7.55 8.41 8.95 9.55

6-gram 6.86 7.54 8.39 8.96 9.55

7-gram 6.83 7.55 8.40 8.96 9.55

Table 6.2: Phone error rate (PER) of letter-to-phone conversion varying graphone size

(columns) and language model size (rows). The lowest error rate is shown in bold.

the split, I kept a word and all its pronunciation variants as a unit. I have

made my particular training, development and evaluation split available so other

researchers can more easily compare techniques [150].

As an evaluation metric, I used the phone error rate (PER). PER is the

minimum edit distance between the recognized phone sequence and its reference.

For words with multiple pronunciations, I took the PER to be the minimum

PER out of all pronunciations. I report error bars using a one standard error

(σse) confidence interval obtained via per-word bootstrap resampling [17]. Except

where specified, the letter-to-phone results I present in this section were on my

development test set.

6.4.2 Graphone Size

I tested a variety of graphone sizes using different sized language models. As

shown in table 6.2, models allowing graphones with no letters or no phones (0–X

models) outperformed those with a 1 letter/phone minimum. As in [18] and [28],

small 0–1 graphones with long-span language models provided the best letter-to-

phone accuracy. Since gains were small beyond a 6-gram language model, I chose

a 6-gram language model and 0–1 graphones for use in letter-to-phone conversion.

172

6.4 Letter-to-Phone Experiments

6.4.3 Initialization and Training

Training requires an initial inventory of graphones as well as probabilities of each

graphone. I tried two initialization methods:

• Flat – I enumerated all possible graphones by combining every possible

letter with every possible phone (including a “null” letter/phone). I then

set the probability of each graphone to be equal. Flat initialization was

only feasible for short models such as 0–1.

• All sequences – I searched for all possible segmentations of dictionary en-

tries into graphone sequences, subject to the model’s graphone size restric-

tion. A complete search of all segmentations was computationally expensive

for longer words. For long words, I searched only for sequences involving

graphones with a size one larger than the minimum length of the model.

The initial probability of a graphone was set based on its relative frequency

in the segmentations found by the search.

I used two training methods:

• Viterbi – Training used just the most likely graphone sequence for each

training example (see section 6.3.5). During Viterbi-style training, I pruned

graphones if the number of times they were used in the alignment of the

dictionary fell below a minimum count.

• EM – Training used a summation over all possible graphone sequence for

each training example (see section 6.3.6). During EM-style training, I used

the “evidence trimming” approach as in [16]. In evidence trimming, gra-

phones are pruned if their maximum conditional probability given a dictio-

nary entry became too low.

I tested models built with both initialization methods and both training meth-

ods. As shown in table 6.3, all models performed about the same. EM training

of the unigram graphone probabilities made only a small improvement to the

eventual PER of the model. This is probably because the graphone unigram

173

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

Graphone Initialization PER ± σse

training method

Viterbi flat 6.83 ± 0.12

Viterbi all sequences 6.83 ± 0.12

EM flat 6.81 ± 0.12

EM all sequences 6.79 ± 0.12

0 2 4 6 8

Table 6.3: Results using both initialization and both training methods to build a 6-gram

0–1 model.

probabilities learned via EM are merely a starting point. The unigrams are used

to segment the dictionary in order to train a 2-gram language model, the 2-gram

language model is used to train a 3-gram language model, and so on. These subse-

quent steps of training longer-span language models are making hard, Viterbi-like

segmentation decisions. Any initial advantage offered by the EM unigram model

would probably disappear in the subsequent training iterations of the longer-span

language models.

6.4.4 Smoothing and Interpolation

As longer-span language models are used, sparsity in the training data can cause

unreliable estimates of n-gram probabilities if they are calculated directly from

the relative frequencies. For 2-gram and longer language models, smoothing of

the n-gram probabilities can be done using a variety of techniques such as Good-

Turing [61], Witten-Bell [14], absolute discounting [109], or Kneser-Ney [85]. An-

other choice is whether the model should always interpolate higher-order n-grams

with lower-order n-grams. For an overview of language model smoothing tech-

niques and interpolation, see [30].

As shown in table 6.4, the smoothing method chosen greatly influenced the

accuracy of the model. I found interpolation was critical for obtaining good

performance using long-span language models and small 0–1 graphones. I suspect

174

6.4 Letter-to-Phone Experiments

Smoothing Inter- PER ± σse

method polation

Good-Turing no 8.19 ± 0.12

Witten–Bell no 7.98 ± 0.13

absolute disc. of 0.9 no 11.76 ± 0.14

original Kneser–Ney no 8.61 ± 0.13

Witten–Bell yes 7.61 ± 0.13

absolute disc. of 0.5 yes 8.03 ± 0.13

absolute disc. of 0.8 yes 7.45 ± 0.12

absolute disc. of 0.9 yes 7.37 ± 0.12

absolute disc. of 1.0 yes 8.17 ± 0.13

original Kneser–Ney yes 6.81 ± 0.12

0 2 4 6 8 10 12

Table 6.4: PER of letter-to-phone conversion using different smoothing methods and

interpolation during graphone language model training. Results are on a 6-gram 0–1

model.

this is due to the small amount of training data involved (around 100K words).

The high-order n-grams probably needed to share information with the better

estimated lower-order n-grams. Of all the methods, interpolated original Kneser-

Ney performed the best.

6.4.5 Iterative Training

In the simplest case, a language model of the desired span (3-gram, 4-gram, etc.)

is trained directly on the segmentation provided by the unigram model. I also

investigated an iterative training scheme. This was similar to the scheme used

by Chen to train a maximum entropy language model [28].

In iterative training, a 2-gram language model is first trained on the initial

segmentation provided by the unigram model. This 2-gram language model is

175

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

Iter. LM LM cutoffs EOW PER ± σse

yes 0 yes 6.81 ± 0.12

no 0 yes 6.83 ± 0.12

yes 1/1/1/2/2/2 yes 7.29 ± 0.12

yes 0 no 6.61 ± 0.12

0 2 4 6 8

Table 6.5: Effect of changing one thing at a time from my default letter-to-phone

model (first row). I changed: iterative language model training, language model count

cutoffs, and use of the end-of-word (EOW) letter. Results are on a 6-gram 0–1 model.

then used to re-segment the training data, training another language model, and

the process is repeated until convergence. After convergence, the span of the

language model is increased by one. The new longer-span language model is then

trained to convergence, and so on. To test for convergence, I used the Bayesian

information criterion [127]. This criterion prefers models that explain the data

well but which use fewer model parameters.

To test the benefit of the iterative scheme, I compared performance with a

language model that was trained directly on the initial graphone segmentation

provided by the EM-trained unigram model. The iterative scheme provide only

a small (0.02% absolute) improvement in PER (row 1 versus row 2, table 6.5).

6.4.6 Count Cutoffs

Another issue in graphone language model training is how to handle n-grams that

occur infrequently in the training data. Typically in a word language model, a

cutoff value is used that treats low frequency events as if they had never occurred.

But a word language model usually has orders of magnitude more data than is

typically available when training a graphone language model.

By default, SRILM treats 1/2/3-grams occurring 1 time and any longer n-

grams occurring 1–2 times as having never occurred. Given the small amount of

176

6.4 Letter-to-Phone Experiments

training data involved in estimating my graphone language model, I trained my

graphone language models with no count cutoffs. To show the benefit of training

with no cutoffs, I compared with a 6-gram 0–1 model trained using SRILM’s

default cutoffs. The language model trained with the default cutoffs had a 0.48%

higher PER (row 1 versus row 3, table 6.5).

6.4.7 End-of-Word Letter

To convert a sequence of graphones into likely OOV words, I added a special end-

of-word (EOW) letter to the end of every training word. But for letter-to-phone

conversion of a dictionary like CMU, the word boundaries are known. Thus it is

not strictly necessary to include the EOW letter. I found using the EOW letter

hurt performance somewhat, increasing PER by 0.20% absolute (row 1 versus

row 4, table 6.5). Thus I will add the EOW letter only when the model must find

word boundaries.

6.4.8 Summation Search

In letter-to-phone conversion, the best phone sequence is sought for a particu-

lar letter sequence. The exact graphone segmentation that generated a phone

sequence may not be of interest. There may be in fact be more than one segmen-

tation that leads to a particular phone sequence. This suggests an opportunity

to improve letter-to-phone accuracy by summing over all segmentations.

Using an n-best search, I approximated the search for all possible graphone

segmentations for a given letter sequence. I summed the probability of all seg-

mentations that produced the same phone sequence. I then chose the phone

sequence with the highest probability sum. I found the summation search with a

6-gram 0–1 model produced the same PER as a 1-best search. The n-best search

also required substantially more computation. While the n-best search might

be useful in circumstances when alternates to the 1-best are needed, it does not

appear useful for improving 1-best accuracy. In work done in parallel with my

177

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

own, Bisani and Ney [19] also found that summation search did not improve

performance of their best letter-to-phone model.

6.4.9 Performance on Unseen Test Set

I tested for generalization by using my best model on unseen evaluation test data.

My best model for letter-to-phone conversion was an EM-trained 0–1 graphone

model. I trained the model without the EOW letter. For this final evaluation, I

trained the model using both my training and development test sets (80% of the

CMU dictionary). I initialized the graphone inventory with all possible graphones

and set their probabilities to be equal. From the 0–1 graphones, I iteratively

trained a 6-gram language model using no count cutoffs and using interpolated

Kneser-Ney smoothing.

My best model had a PER of 6.51% (σse = 0.08%) on the evaluation set. Other

reported CMU letter-to-phone results are 5.88% by Bisani and Ney [19], 5.9% by

Chen [28] and 7.0% by Galescu [56].

I tested the implementation released by Bisani and Ney [20] using my training,

development and evaluation set. I found for a 0–1 9-gram model, their imple-

mentation was only 0.1% absolute better than my own (6.4% versus 6.5%). This

was despite their use of a graphone-specific EM-training regimen which optimized

the language model’s smoothing parameters using Powell’s method [119]. This

shows that careful use of standard language modeling techniques can achieve

state-of-the-art letter-to-phone performance.

6.5 Word+Graphone Language Models

As shown earlier, even a very large vocabulary using domain-specific vocabulary

fails to cover a certain percentage of words. In this section, I show how to recog-

nize novel words. This is done by training a language model on text where each

OOV word has been replaced by its most likely graphone sequence. This word+

graphone language model is then used for recognition, returning both words and

178

6.5 Word+Graphone Language Models

B

CMU
dictionary

3-gram LM
1-5 graphones

In-vocab
word list

6-gram LM
0-1 graphones

LM text

LM text with phones for OOVs:

LM text, graphones for OOVs:

A

C

D

E

<s> the () sat </s>cheetah

ch iy t ah

<s> the ()() sat </s>chee

ch iy

tah

t ah

Word + graphone LM

A

B

C

D

E

Train good letter-to-phone graphones

Train good recognition graphones

Find best phones for OOVs in LM text

Segment OOVs into graphones

Train word+graphone LM

Figure 6.3: Overview of the process of training a word+graphone language model.

graphones. In this way, a novel OOV word can be recognized when the evidence

suggests it is more appropriate than an in-vocabulary word.

6.5.1 Language Model Training

Previous research such as [18] has used a single-step process to train word+

graphone language models. In the single-step process, the graphone model used

for recognition is also used to determine the phone sequence of OOV words in the

language model training text. Typically, bigger graphones (such as 1–5) perform

better for recognition [18]. In addition, 0–X graphones are typically not allowed

as the recognizer usually requires non-null phone sequences for dictionary entries.

But longer graphones are not as good at inferring the phone sequences for OOV

words in the language model training text. Training on less accurate OOV phone

sequences seems unlikely to be helpful in correctly recognizing OOVs.

To address this problem, I created a new two-step process utilizing two dif-

ferent graphone models (overview in figure 6.3). First, given an in-vocabulary

list, I replaced each OOV word in the language model training text with its most

likely graphone sequence. For example, consider the sentence “The cheetah sat”.

179

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

If “cheetah” is not part of the in-vocabulary set of words, it will be replaced by

its most likely graphone sequence:

The

(
c
ch

)(
h
)(

e
iy

)(
e
)(

t
t

)(
a
)(

h
ah

)
sat.

In this first step, OOV words were replaced using a graphone model tuned

for letter-to-phone conversion (a 6-gram 0–1 model without the EOW letter). In

cases where an OOV was in the CMU dictionary (but not in the in-vocabulary

set used for recognition), I used the CMU phone sequence as a constraint when

searching for the best phone sequence using the graphone model.

In the second step, I used the OOV phone sequences found with the best

letter-to-phone model as a search constraint when segmenting OOVs with the

graphone model used for recognition. For example, a 1–5 model with the EOW

letter might re-segment the above example as:

The

(
chee
ch iy

)(
tah •
t ah

)
sat.

Once the language model training text had been re-segmented using the bigger

graphone model, the final word+graphone language model was trained.

6.5.2 OOV Penalties

During recognition, an empirically determined word insertion penalty is usually

added to every word in the recognition hypothesis. This provides a parameter

that can be adjusted to reduce insertion errors. Without any modification, a

recognizer will penalize every lexical item in a word+graphone language model.

This results in OOV words typically incurring multiple word insertion penalties

as they usually consist of multiple graphones. No prior work has discussed what

effect this has on recognition accuracy. I investigated different penalty schemes

by modifying the recognizer to allow separate penalty values depending on the

dictionary entry:

180

6.5 Word+Graphone Language Models

• Word insertion penalty – Added to all in-vocabulary words.

• OOV unit penalty – Added to all graphones.

• OOV word penalty – Added to all EOW graphones (in addition to in-

curring a OOV unit penalty).

6.5.3 Determining OOV Word Boundaries

A problem with using graphones for recognition is how to determine word bound-

aries. The recognizer may return several contiguous sequences of graphones, each

of which represents a distinct word. For example, if the user says “The wily

cheetah ran”, the recognizer might return a sequence of words and graphones:

The

(
wi
w ay

)(
ly
l iy

)(
ch
ch

)(
ee
iy

)(
t
t

)(
ah
ah

)
ran.

In the prior work of Bisani and Ney [18], a simple heuristic of combining

adjacent graphones into a single word was used. This heuristic obviously fails if a

user speaks consecutive OOV words (e.g. an uncommon proper name or technical

phrase).

As previously described, I allowed graphone models to be trained with or

without a special pseudo-letter that denotes the end of a word. This end-of-word

(EOW) letter was added to the end of every OOV’s letter sequence before training

the word+graphone language model. At recognition time, the EOW letter can

then be used to split a sequence of graphones into its constituent words.

6.5.4 Open Vocabulary Confusion Networks

I extended the word+graphone recognition technique to allow creation of word

confusion networks [104] containing both in- and out-of-vocabulary words. This

provides a handy representation that I will use in the correction interface for

spoken search queries.

181

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

<s> the

[]chee []tah

cheek

sat

stack

</s>

[]da

-10,-2

-20,-3

-40,-6

-50,-5

-30,-4 -20,-7

-40,-6

-10,-4

-30,-9

-60,-1
-40,-3

(a) Original lattice

[]cheetah

[]cheeda

<s> the

cheek

sat

stack

</s>

-10,-2

-20,-3

-70,-10 -20,-7

-40,-6

-10,-4

-30,-9

-60,-1
-40,-3

-90,-11

(b) Merged lattice

<s> 1.0 the 1.0 </s> 1.0

cheek 0.1

[cheedah] 0.1

[cheetah] 0.7 sat 0.8

stack 0.1

delete 0.1

(c) Open vocabulary confusion network

Figure 6.4: The stages of creating an open vocabulary confusion network. The numbers

on the edges of 6.4a and 6.4b denote acoustic and language model log likelihoods. The

numbers on the edges of 6.4c denote word posterior probabilities.

Recognition using a word+graphone language model results in a recognition

lattice containing both words and graphones (figure 6.4a). Graphone nodes are

merged into OOV words while maintaining the lattice’s original paths. After

merging, the lattice contains complete OOV words (figure 6.4b). Thereafter,

a word confusion network is created. The network’s best guess is called the

consensus hypothesis and is found by taking the highest probability hop in each

set.

The lattice merge algorithm is an iterative process. First, a lattice node which

is a graphone without the EOW letter is selected. For every graphone following

this node, a new node is created, concatenating the two nodes’ letters and phones.

Edges are created to and from the new node, maintaining the original lattice paths

and scores (see algorithm 1 for details). The next non-EOW node is selected,

and the process continues. Upon completion, the lattice contains complete OOV

words with known pronunciations (figure 6.4b). An open vocabulary confusion

182

6.6 Word+Graphone Experiments

network (OVCN) is created by transforming the lattice into a confusion network

(figure 6.4c). I built the confusion network using an algorithm based on the one

implemented by SRILM [138].

Algorithm 1 can be computationally demanding as it requires creation of a

new lattice node for every possible path between a starting graphone and all

reachable ending graphones. To keep the algorithm tractable, I added pruning. I

pruned a partial OOV word candidate if its average per letter combined acoustic

and language model score became too unlikely compared to a successfully merged

OOV. The pruning beam was applied based on the best, completely merged OOV

word whose start time was within a window of the search candidate’s start time.

This helped ensure reasonable sets of OOV guesses were obtained for different

time regions in the lattice.

OOV unit and word penalties were incorporated by adding a single OOV unit

penalty to each graphone’s language model probability. EOW graphones were

further adjusted to account for a single OOV word penalty. The merge algorithm

then proceeded as normal.

6.6 Word+Graphone Experiments

In this section, I describe experimental results using word+graphone language

models for recognition. I investigate the effectiveness of my new techniques of two-

step training, variable OOV penalties, and open vocabulary confusion networks.

6.6.1 Experimental Setup

For recognition, I used HTK v3.4 [167; 168], HDecode, and the acoustic model

training recipe from [147]. I trained cross-word triphones on the WSJ0 [57],

WSJ1 [5] and TIMIT [58] corpora (223 hours). I parameterized audio into a

39-dimensional feature vector consisting of 12 Mel-frequency cepstral coefficients

plus the 0th cepstral, deltas and delta deltas, normalized using cepstral mean

subtraction. The model had 10K tied-states with 32 continuous Gaussians per

183

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

a
1

a
i

b

c
1

c
j

d
1

d
k

N = lattice nodes, words/graphones ending at a time

E = lattice edges, with acoustic and LM scores

B = all nodes that are graphones without the EOW letter

while B not empty do
b = some node from B

for each child c of b do
Create new node n where n:

Ends at time of node c

Concatenation of letters/phones in b and c

for each child d of c do
Create edge n→d with same score as c→d

for each ancestor a of b do
Create edge a→n with sum of scores of edges a→b and b→c

if n does not have end letter then
Add n to B

Remove all edges to and from b, delete b

Remove all nodes no longer on any path through lattice
Algorithm 1: Merges a lattice’s graphones into complete OOV words.

state (64 for silence). I used the CMU phone set without stress markings (39

phones plus silence). Each phone HMM had three output states and a left-to-

right topology with self-loops. For a pronunciation dictionary, I used the CMU

dictionary [25]. Decoding took about 6× real-time (6 times as long as the input

audio) on a 3 GHz machine.

In this section, I used newswire vocabularies and language models to allow

comparison with past work on open vocabulary recognition (e.g. [18]). I trained

baseline and word+graphone language models using SRILM and the CSR-III text

corpus (222M words). I used the most frequently occurring words to generate 20K

and 64K vocabularies. I trained language models using interpolated modified

Kneser-Ney smoothing and a count cutoff of 1 for unigrams, 1 for bigrams, and

184

6.6 Word+Graphone Experiments

Model Graphones Bigrams Trigrams

20K baseline - 10.0M 8.5M

20K + 1-2 graphones 4K 11.6M 10.3M

20K + 1-3 graphones 9K 12.6M 10.4M

20K + 1-4 graphones 20K 13.5M 10.3M

20K + 1-5 graphones 33K 14.1M 10.2M

20K + 1-6 graphones 37K 14.3M 10.2M

20K + 1-7 graphones 40K 14.4M 10.2M

64K baseline - 13.5M 8.9M

64K + 1-2 graphones 4K 14.6M 9.9M

64K + 1-3 graphones 9K 15.1M 9.9M

64K + 1-4 graphones 19K 15.4M 9.8M

64K + 1-5 graphones 31K 15.6M 9.7M

64K + 1-6 graphones 35K 15.7M 9.7M

64K + 1-7 graphones 37K 15.7M 9.7M

Table 6.6: The number of graphones, bigrams and trigrams in the baseline and word+
graphone language models.

3 for trigrams. Table 6.6 shows the number of graphones and n-grams in the

baseline and word+graphone language models.

I used a bigram language model for decoding and rescored lattices with a tri-

gram model. I obtained the “best path” results by performing a Viterbi search

of each utterance’s recognition lattice while enforcing the appropriate word inser-

tion, OOV unit and OOV word penalties. I merged OOV units into word-level

results using the EOW-letter to segment any contiguous OOV words. I obtained

the “conf net” results by using the consensus hypothesis from each utterance’s

confusion network. I constructed the confusion network by using algorithm 1 on

the recognition lattice and then creating a confusion network using SRILM.

For a test set, I combined the WSJ0 si dt 20 and WSJ1 si dt 20 test sets (894

sentences, 2.3% OOV at 20K vocab, 0.3% at 64K). In this chapter, I refer to this

combination of test sets as si dt 20. Some example sentences from si dt 20

185

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

7.5

8.5

9.5

10.5

11.5

Baseline 1-2 1-3 1-4 1-5 1-6 1-7

W
E

R
 (

%
)

Model

 20K best-path
 20K conf net

 64K best-path
 64K conf net

Figure 6.5: Best-path and confusion network results at 20K and 64K in-vocabulary

sizes. The x-axis shows the language model used, from baseline (no graphones) up to

1–7 graphones. Results on the si dt 20 test set.

and their corresponding recognition results are shown in table 6.7.

6.6.2 Graphone Size and Decoding Technique

Figure 6.5 shows the recognition accuracy using 20K and 64K language models

both without graphones (baseline) and with graphones of varying lengths. Using

20K in-vocabulary words, word+graphone language models reduced WER by

up to 2.4% absolute, 21% relative. Longer graphones provided bigger WER

reductions, though gains were small beyond 1–5 graphones. There were no gains

using 64K in-vocabulary words. This is probably due to the low 0.3% OOV rate

at a 64K vocabulary.

Figure 6.5 also shows the difference between my new open vocabulary con-

fusion network technique and the existing best-path technique. I found that

for all graphone sizes, open vocabulary confusion networks provided small, but

consistent WER gain of about 0.2% absolute over a best-path technique.

186

6.6 Word+Graphone Experiments

Ref: the serpent in this case is government

Base: the servant in this case is government

OOV: the

(
serp

s er p

)(
ent •
ah n t

)
in this case is government

Ref: weaving dog fur into yarn isn’t simple

Base: wheeling dog for into yarn isn’t simple

OOV:

(
weav

w iy v

)(
ing •
ih ng

)
dog for into yarn isn’t simple

Ref: they lit bonfires smashed windows and threw stones at police

Base: they live on fires smashed windows and threw stones and police

OOV: they lit

(
bon

b aa n

)(
fire

f ay er

)(
s •
z

)
smashed windows

and threw stones and police

Ref: it’s kind of peculiar

Base: it’s kind of the kill you

OOV: it’s kind of the

(
kill

k ih l

)(
ian •
y ah n

)

Ref: it looks as though father sadlowski has a long haul ahead of him

Base: it looks as though father said laos key have long haul ahead of him

OOV: it looks as though father said

(
low

l aw

)(
sky •
s k iy

)
have long

haul ahead of him

Table 6.7: Some recognition examples from the si dt 20 test set. Recognition results

used either a baseline in-vocabulary language model (denoted base) or a word+graphone

language model (denoted OOV). Word errors are shown by red underlining. In the

first three examples, graphones have successfully recognized the OOV words “serpent”,

“weaving”, and “bonfires”. In the fourth example, graphones have tried and failed to

recognize the in-vocabulary word “peculiar”. In the last example, graphones have tried

and failed to recognize the OOV proper name “sadlowski”.

187

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

8.5

9.5

10.5

1-2 1-3 1-4 1-5 1-6 1-7

W
E

R
 (

%
)

Model

Two-step
Direct

Figure 6.6: Comparison of the WER of a word+graphone models trained either using

a direct alignment (top line) or using my new two-step process (bottom line).

6.6.3 Two-step Language Model Training

I compared my new two-step training process (described in section 6.5.1) to the

existing method of directly aligning using the graphone model used by the rec-

ognizer. As shown in figure 6.6, the two-step process performed only slightly

better than the single-step method. The longer 1–6 and 1–7 graphone models

showed the largest benefit. This is probably because bigger graphones like 1–7

are not very good at letter-to-phone conversion. By using the two-step process,

more accurate phone sequences were obtained for OOVs in the language model

training text and this resulted in better OOV recognition.

6.6.4 Decoding Time

As shown in figure 6.7, decoding using graphones required substantially more

computation time. On average, recognition with the baseline in-vocabulary lan-

guage models performed at 2.5× real-time (on a 2.4 GHz computer). On average,

recognition using the word+graphone language models performed at 6.4× real-

time. The 20K and 64K language models took about the same time for decoding.

The additional decoding time required by word+graphone language models was

188

6.6 Word+Graphone Experiments

 2

 3

 4

 5

 6

 7

 8

none 1-2 1-3 1-4 1-5 1-6 1-7

R
ea

lti
m

e
fa

ct
or

 (x
R

T)

Graphones

20k in-vocab
64k in-vocab

Figure 6.7: Real-time factor for decoding si dt 20 utterances using different word and

word+graphone language models.

probably the result of additional search hypotheses caused by the inclusion of the

short, sub-word graphones in the recognizer’s vocabulary.

6.6.5 Insertion and OOV Penalties

I modified my recognizer to allow separate penalties for in-vocabulary words,

graphones, and EOW-graphones (see section 6.5.2). Until this point, I used a

uniform penalty for every dictionary item. This uniform penalty was set to −20

(log base e), a value found to be the optimum insertion penalty using a word-only

language model on the si dt 20 test set.

I investigated if accuracy could be improved by varying the penalties associ-

ated with OOVs. Leaving the word insertion penalty fixed at −20, I varied both

the OOV unit penalty and the OOV word penalty. As shown in figure 6.8, using

a small OOV unit and OOV word penalty provided the best results. At least

on si dt 20, the added flexibility of separate OOV penalties did not outperform

simply using a single insertion penalty for all dictionary items. So for further

experiments, I will use a word insertion penalty of −20, an OOV unit penalty of

−20, and an OOV word penalty of 0.

189

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

OOV u
nit p

enalty

−80

−60

−40

−20

0

O
O

V
 w

ord penalty

−80

−60

−40

−20

0

W
E

R
 (%

)

9.0

9.5

10.0

10.5

OOV unit penalty

O
O

V
 w

o
rd

 p
e

n
a

lt
y

 9

 9

 9.2

 9
.4

 9
.6

 9
.8

 1
0

 1
0
.2

 10.4

 1
0
.6

 1

0
.8

0 −20 −40 −60 −80

0
−

2
0

−
4
0

−
6
0

−
8
0

Figure 6.8: WER as both the OOV unit penalty and OOV word penalty were varied.

Results on si dt 20 using a 20K + 1–5 graphone language model.

6.7 Web Search Query Corpus

I could find no publicly available text or speech corpora in the web search query

domain, so I collected my own. As a basis, I used past user searches mined

from various web search “spy” pages. These spy pages display recent or popular

searches made by users of a particular search engine. Over a period of about four

years, I collected around 4 million queries. To further expand my collection, I

used the “related search” feature of the Yahoo! search engine via their developer

API [4]. The Yahoo! related search feature returns a list of other possible queries

based on the original query. Table 6.8 shows some example queries and their

related search results.

I added the Yahoo! related search variants to my collection. I also used Yahoo!

to filter out any of my original queries that had no related results. This helped

eliminate many of the ill-formed queries in the original search spy results. After

expansion and filtering, I had 7.1M search queries.

To provide more data, I fed individual “seed” words to the Yahoo! related

search feature. For some seed words, Yahoo! would respond with a list of related

searches that probably represent past searches on Yahoo!. As seed words, I chose

190

6.7 Web Search Query Corpus

Original search Related searches

bacon recipe hot bacon dressing recipe

chicken bacon recipe

how to bake bacon recipe

filet mignon wrapped in bacon recipe

chicken wrapped in bacon recipe

scallops bacon recipe

bacon wrapped water chestnut recipe

german steins beer steins

german beer steins

beer mugs

beer glasses

Table 6.8: Example search queries and their related searches as returned by Yahoo!.

Average Median Maximum Standard deviation

Words 2.9 (2.6) 3 (2) 37 (39) 1.4 (1.7)

Chars 18.9 (16.9) 10 (15) 168 (224) 8.5 (9.2)

Table 6.9: Statistics about the queries in my corpus. Numbers in parentheses are from

a study of search queries submitted to Google from mobile phones and PDAs [79].

words from the CMU dictionary, words in the titles of Wikipedia articles, and

the top unigrams from the Google corpus [23]. From approximately 500K unique

words, I obtained an additional 3.1M search queries.

I combined the training queries from both the spy pages and from the seeded

queries. I reserved 10% of the queries as test data. This left 9.1M queries from

which to train my language model. Table 6.9 summarizes my search query corpus.

My corpus statistics were broadly similar to the published statistics on search

queries submitted to Google from mobile phones and PDAs [79]. Obviously,

my collection procedure may have resulted in a smaller and lower quality data

collection than what might be available to commercial search engine companies.

However, as I will show, even my modest corpus provided major gains over merely

191

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

using readily-available newswire training text. I will also show that models built

using my corpus were successful at recognizing spoken search queries.

6.8 Web Search Experiments

In this section, I describe computational experiments I conducted to test recog-

nition techniques for spoken search queries. I compare accuracy using normal

vocabularies, vocabularies with inferred pronunciations, and word+graphone lan-

guage models.

6.8.1 Experimental Setup

I ran computational experiments using recorded audio containing spoken search

queries. For recognition, I used HTK and HDecode as in prior experiments.

I trained a speaker-independent acoustic model with 16 continuous Gaussians

per state (32 for silence) and 8K tied-states. I report error bars using a one

standard error (σse) confidence interval obtained via per-utterance bootstrap re-

sampling [17].

To provide a development audio test set, I recorded 755 search queries. Au-

dio was recorded at 16 kHz using a wired headset microphone. The queries were

drawn from a search engine spy [1] that was not used for the original data col-

lection. The test set had an OOV rate of 7.9% using a 86K vocabulary that

contained all CMU dictionary words that occurred in the search query corpus.

The average search query length was 3.0 words (19.5 characters). The test set

had a per-word perplexity of 296 using a 86K vocabulary trigram language model

trained on search queries. Of the 755 test set queries, 36% of the queries had also

occurred in the language model’s training set of queries.

192

6.8 Web Search Experiments

 25

 26

 27

 28

 29

 30

0.0

0.05

0.1

0.15

0.2

0.3

0.5

W
E

R
 (%

)

Mixture weight (λ)

CMU 86K
CMU 86K + OOV

Figure 6.9: WER varying the mixture weight between the newswire and search language

models. λ= 0.0 uses only the search language model, λ= 0.5 uses an equal mix of each.

The in-vocabulary set was the 86K words in CMU that occurred in the search corpus.

6.8.2 Mixture Language Model

When building the language model there is a question of the relative importance

of using search-specific training text versus easily-available newswire text. In

addition, since my search corpus was somewhat small (27M words), I hypothesized

it might help to use additional non-search training text.

To investigate this issue, I trained a range of language models that mixed

a search language model and a newswire language model. For the newswire

language model, I segmented the sentences in the CSR corpus (222M words)

into short pseudo-sentences of 1 to 5 words. I trained the search and newswire

language models separately and then created a mixture language model with

SRILM [138]. The mixture model used a linear combination of the n-gram prob-

abilities from each language model with the relative importance of the two models

being controlled by a mixture weight λ. I trained both an in-vocabulary language

model and a word+graphone language model that added 17K 1–4 graphones.

The in-vocabulary language model trained only on search data (λ= 0.0) had

a WER of 28% and the word+graphone language model had a WER of 26%

(figure 6.9). The in-vocabulary language model trained only on newswire data

193

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

 24

 26

 28

 30

 32

 34

 36

 0 50 100 150 200 250 300

W
E

R
 (%

)

In-vocab size (K)

CMU
Search

CMU + OOV
Search + OOV

Figure 6.10: WER using different vocabularies types and sizes.

(λ= 1.0) had a WER of 41% and the word+graphone language model had a WER

of 37%. Thus it appears to be very beneficial to train on search-specific data.

Mixing in a small amount (λ= 0.05) of the newswire language model improved

the in-vocabulary language model slightly, reducing WER by 0.1% absolute. The

word+graphone language model saw more of an advantage, improving WER by

0.6% absolute for λ= 0.2. The newswire language model may be improving the

OOV mixture by providing more data to train n-grams involving graphones. Ex-

cept where specified, the remaining experiments used λ= 0.05.

6.8.3 Vocabulary Type

I tested two types of vocabularies, each consisting of the most frequent words seen

in my search corpus. The first type (denoted CMU) was limited to words that

occurred in the CMU pronunciation dictionary. The other type (denoted Search)

was free to use any word. For words that were not in the CMU dictionary, the

single best phone sequence was found with a letter-to-phone graphone model (0–

1 graphones, 6-gram language model). In addition, I tested vocabularies that

added 17K 1–4 graphones (denoted CMU+OOV and Search+OOV).

As shown in figure 6.10, the type and size of vocabulary had a large influence

194

6.8 Web Search Experiments

LM size ×RT Memory WER ± σse

Unigram 1.4 152 MB 41.7 ± 1.4

Bigram 1.3 172 MB 27.1 ± 1.3

Trigram† 1.3 291 MB 26.3 ± 1.3

0 15 30 45

Table 6.10: Real-time factor, memory use, and WER for different language model sizes.

Results using a 100K Search vocabulary. †Bigram used for recognition, rescored with a

trigram.

on the WER. The CMU vocabulary performed the worst with a WER of 28%

(using 86K words). For large vocabulary sizes, the other three vocabulary types

performed nearly the same with a WER of about 25%. Given the extra recogni-

tion time and memory required by word+graphone language models, the Search

vocabulary is to be preferred.

6.8.4 Number of Pronunciations

Instead of using just the 1-best pronunciation found for words in the Search vocab-

ulary, I investigated including multiple pronunciations by doing an n-best search

using the letter-to-phone model (see section 6.3.7.1). I tested assigning the pro-

nunciation probabilities of the multiple alternatives either uniformly or by setting

them proportional to their probability under the letter-to-phone model. I found

there was no reliable improvement using multiple pronunciations. Using multi-

ple pronunciations also slowed decoding significantly; using three pronunciation

variants doubled decoding time.

6.8.5 Language Model Size

Prior work on web search query recognition has used a unigram language

model [53; 129]. As shown in table 6.10, I found that using a bigram language

model gave more accurate results and did not slow decoding. I found rescoring

195

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

Figure 6.11: Example of correcting a query using Parakeet. The user has spoken

“quadrajet vacuum diagram”. The recognizer has proposed various novel words in the

first column including the correct one. The user corrects recognition errors by selecting

alternative words from each column. The “X” box at the bottom allows deletion of

words.

the bigram lattices with a trigram language model improved accuracy slightly

and required very little additional time. The memory use of HDecode with the

bigram language model was only 13% more than with the unigram. The trigram

language model however required 70% more memory than with the bigram. The

100K Search language model had 4.5M bigrams and 5.5M trigrams.

6.8.6 Performance using Correction Interface

I will describe computational experiments in the context of a correction interface

based on the Parakeet system [152] (also described in chapter 5). The interface

allows users to speak a query and then correct recognition errors by selecting

words from a confusion network. The user can also delete a word using the

“X” box. Figure 6.11 shows Parakeet’s main correction interface. Words in the

recognizer’s best hypothesis are displayed at the top. Below each word in the

best hypothesis are other probable alternative words.

Using these correction features, I simulated an “oracle” user. The oracle user

196

6.8 Web Search Experiments

 10

 11

 12

 13

 14

 15

 16

 17

 18

 0 50 100 150 200 250 300

O
ra

cl
e

W
E

R
 (%

)

In-vocab size (K)

CMU
Search

CMU + OOV
Search + OOV

Figure 6.12: The oracle WER achievable using the Parakeet correction interface with

four alternatives per recognized word and a delete box.

made optimal use of a given confusion network and set of interface actions to

correct as many errors as possible in the recognition result. The number of word

choices in Parakeet was chosen to provide the majority of oracle accuracy gains

while still keeping buttons big enough for easy use by touch (see chapter 5).

As shown in figure 6.12, the correction interface offered substantial WER

reductions across all vocabulary types and sizes. The CMU+OOV vocabulary

was the best with an oracle WER of 11%. This means that from an initial 1-best

WER of 25%, over half (56%) of the recognition errors could be corrected using

just Parakeet’s confusion network interface.

6.8.7 Testing on Realistic Audio

In the user study (to be described shortly), I collected 776 queries from 4 users.

The users spoke the queries while walking around indoors using the Parakeet

interface on a mobile device . I used the collected audio in offline experiments

using the recognition techniques and setup described previously (section 6.8.1).

As shown in table 6.11, accuracy was improved by 34% relative using a mixture

language model, switching to a Search vocabulary, and increasing the vocabulary

size to 100K. I found that adding graphones to the language model helped the

197

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

Vocab In-vocab Mix ×RT WER ± σse

type size λ

CMU 86K 1.00 2.3 53.5 ± 1.6

CMU 86K 0.00 1.7 37.7 ± 1.5

CMU 86K 0.05 1.9 37.4 ± 1.5

CMU+OOV 86K 0.05 6.5 36.1 ± 1.4

Search 86K 0.05 2.3 35.7 ± 1.4

Search 100K 0.05 2.3 35.1 ± 1.4

Search 140K 0.05 2.7 35.3 ± 1.4

Search+OOV 140K 0.05 8.1 35.5 ± 1.4

0 15 30 45 60

Table 6.11: Performance of different language models on the audio recorded during

the user study. These results used the HTK recognition setup.

CMU vocabulary but not the Search vocabulary. The word+graphone language

models were also found to be much more computationally expensive.

6.9 User Study

Having observed the theoretical benefits of introducing an error correction inter-

face to voice search, I set out to investigate how real users would perform using

such an interface. My user study had three goals. First, to collect externally valid

speech data from users walking around and performing search queries on a mobile

device. Second, to validate the design of my voice search system in a realistic

setting. Third, to get an estimate of the envelope of voice search performance.

6.9.1 Participants and Apparatus

I recruited four participants from the university campus. All participants were

female native speakers of American English and their ages ranged from 23 to 26.

198

6.9 User Study

Figure 6.13: Parakeet’s keyboard interface. As the user types, word predictions appear

above the keyboard.

Participants were asked to speak a set of past queries obtained from a search

engine spy [1]. Participants used the Parakeet system (chapter 5) running on a

Nokia N800 mobile device (figure 6.1). As previously described, users could cor-

rect errors using Parakeet’s confusion network interface (figure 6.11). They could

also correct errors using Parakeet’s on-screen keyboard (figure 6.13). Participants

only had to speak and correct the query, they did not execute actual web searches

or browse results.

I used a 100K Search vocabulary, automatically generating a single pronun-

ciation for words not in the CMU dictionary. I used a language model without

graphones because in pre-study testing I found that using a word+graphone lan-

guage model was too slow to provide near real-time performance. I found I was

able to obtain better accuracy using an in-vocabulary language model and using

the extra processing time to reduce the amount of pruning needed during the

recognition search.

Audio was recorded at a sampling rate of 16 kHz using a Jabra M5390 wireless

microphone. I used PocketSphinx [74] for recognition. The recognition setup

was closely based on the one described in chapter 5. For this study, I used a

US-English acoustic model and increased the number of codebook Gaussians to

1024.

199

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

While Parakeet can perform recognition on the mobile device, this was not

practical for this difficult recognition task. Instead, recognition was performed

on a nearby laptop that was wirelessly connected to the N800 device. However,

to the participant, it appeared just as if the device was doing the recognition.

6.9.2 Method and Setup

Participants first were given an overview of the task and shown the Parakeet

interface. They were allowed to do 5 practice queries under the supervision of

the experimenter.

Participants were prompted with a series of search queries on the screen. They

were asked to enter the search queries as quickly and as accurately as possible.

They were told to accept a search query if they deemed it sufficiently close to

the original search query to be meaningful. For example, a minor misspelling

of a search term may have been accepted by a user since a web search would

still probably yield the intended result. After the participants were satisfied with

their search query, they hit a special hardware button to move to the next query.

Participants spoke and corrected queries for 20 minutes. After a short break,

they corrected queries for another 20 minutes. Participant 1 and 2 did a second

session the following day. This session was identical to the first but without the

training and practice portion.

6.9.3 Results

In total, participants completed 776 queries (2434 words). The OOV rate was

3.8% using a 100K Search vocabulary. In 43% of the queries, participants reviewed

the 1-best result and went directly to the next query. In only 7% of the queries

did participants respeak a query. Participants spent 47% of their correction time

using the confusion network and 53% of their time using the on-screen keyboard.

200

6.9 User Study

Error rate Before correction After correction

Character (CER) 22.9 1.7

Word (WER) 48.0 8.3

Sentence (SER) 61.6 17.4

Table 6.12: Error rates before and after correction in the user study.

6.9.3.1 Error Rate

Users had to wait on average 2.7 s± 0.8 s for the recognition result to appear.

The average recognition WER was 48% (table 6.12). Participants corrected most

recognition errors with an after correction WER of 8%.

The recognition WER seen in the user study was higher than the WER seen

on the development test set used earlier. There were two reasons for this. First,

listening to the audio we found it contained numerous audio artifacts introduced

by the wireless microphone as well as significant breath noises from the partici-

pants. Second, the recognition setup used during the user study needed to operate

in near real-time. It was thus less accurate than the one used in the offline ex-

periments. Using the audio data recorded during the user study and using the

100K Search vocabulary, the HTK recognition setup had a lower WER of 35%

(table 6.11).

I also measured recognition error rate using character error rate (CER) to

provide a finer grain error measure than WER. Given the short nature of queries,

WER can be high due to only minor differences such as spacing or pluralization.

Participants average CER was 23%. Figure 6.14a shows the CER of each par-

ticipant. Participant 1 had the lowest CER of 18% CER while the other three

participants had a CER of between 25% and 32%.

6.9.3.2 Entry Rate

Including recording, recognition delay, and correction time, it took participants

on average 18 s± 15 s to enter a query. Participants’ mean entry rate was

201

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

1 2 3 4

0
5

0
1

0
0

1
5

0

Participant

R
e

c
o

g
n

it
io

n
 e

rr
o

r
ra

te
 (

C
E

R
)

(a) Error rate

1 2 3 4

0
1

2
3

4
5

6

Participant

E
n

tr
y
 r

a
te

 (
c
p

s
)

(b) Entry rate

Figure 6.14: Error rate and entry rate of each participant in the user study.

1.7 cps± 1.2 cps (characters per second). Figure 6.14b shows the entry rate of

each participant. Participant 1’s was particularly fast with an entry rate of

2.2 cps compared to the other three participants who were closer to 1.1 cps. This

was probably due to her lower overall recognition error rate. As a reference point,

Kamvar and Baluja [79] report that Google’s mobile search queries (typically

typed using a telephone keypad or a qwerty thumb keyboard) had a mean

entry rate of 0.42 cps (calculated from table 2 in [79]).

6.9.3.3 Influence of Recognition Errors

As expected, participants’ entry rate was heavily influenced by the recognition

error rate. Figure 6.15a gives us an estimate of the envelope of voice search

performance. It can be used to predict the performance of voice search at different

recognition error levels. Notably, even at a 40% CER, the text entry rate is still at

an acceptable 1 cps (12 wpm). At low error rates between 0–10% CER, I observed

a range of entry speeds from 0.4 to 5.9 cps (4 to 71 wpm). In other words, spoken

search queries can potentially be very fast.

202

6.10 Related Work

Recognition CER (%)

E
n

tr
y
 r

a
te

 (
c
p

s
)

0 10 20 30 40 50 60 70 80 90 100

0
1

2
3

4
5

6

y = 2.10e
−−0.0204x

 R
2
 = 0.56

(a) Results at all error rates

Entry rate (cps)

P
ro

p
o

rt
io

n
 o

f
q

u
e

ri
e

s

0 1 2 3 4 5 6

0
.0

0
.1

0
.2

0
.3

0
.4

(b) Recognition correct

Figure 6.15: Entry rates of participants at different recognition error rates during the

user study (left). When recognition was completely correct, I observed a range of entry

rates (right).

6.10 Related Work

In this section, I review related work in letter-to-phone conversion, open vocab-

ulary recognition, and the recognition of spoken search queries.

I used the joint multigram model for letter-to-phone conversion and also for

open vocabulary recognition. This model was originally developed by Deligne et

al. [43; 44]. They benchmarked the model on letter-to-phone conversion using

a French pronunciation dictionary. They used Viterbi training and kept one

pronunciation variant per training word (in contrast, I used all variants). Their

best French result had a PER of 5.2% using 1–3 graphones and a 2-gram language

model. They did not present results on a completely held-out evaluation test set

(e.g. they optimized parameters such as model size on their test set).

Galescu and Allen [56] tested graphones on English letter-to-phone and phone-

to-letter conversion. They used the NetTalk and CMU dictionaries and kept

multiple pronunciations per word. While not explicitly stated, from the examples

given, they appeared to be using 1–5 or longer graphones. They used a 4-gram

203

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

language model with Witten-Bell smoothing. On the CMU letter-to-phone task,

they obtained a PER of 7.0%. My best model performed slightly better with a

PER of 6.51%.

Bisani and Ney [16] present experiments using graphones for letter-to-phone

conversion in English and German. It is not clear whether they used multiple

pronunciations per training word. They tested graphones of sizes 1–1 to 1–6 and

language models sizes up to 3-gram. Similar to my findings, they found short

graphones and a long-span language model worked best. Also similar to my

findings, EM-training only improved their best model slightly (0.01% absolute).

Their best English model used 1–2 graphones and a 3-gram language model.

This model had a PER of 4.0% on the CELEX dictionary [26]. They did not give

results on a completely held-out evaluation test set. A direct comparison with

my result is difficult due to the different dictionary used.

Chen [28] used EM to train a 0–1 graphone model. He then iteratively trained

a 7-gram maximum entropy language model. He presented results on an unseen

evaluation test set. Similarly, I also used EM training, 0–1 graphones, iterative

language model training, and an unseen evaluation test set. His 0.7% improve-

ment over my model is perhaps due to his longer-span language model and dif-

ferent language model smoothing technique. It could also be due to our different

training and test set splits.

The most extensive experiments using graphones were reported by Bisani and

Ney in [19]. They showed their graphone models were superior to other models

on a wide variety of pronunciation dictionaries. To my knowledge, their CMU

result of 5.88% PER is the best error rate reported on the CMU data set. They

trained their graphone language model using EM and optimized the discount

parameters of their model using Powell’s method [119]. As discussed in section

6.4.9, a model trained using their software and my training/test split had a PER

of 6.41% (compared to my best result of 6.51%). In my experiments, their more

complicated training regime offered only a small advantage in terms of letter-to-

phone accuracy.

204

6.10 Related Work

Other methods besides graphones have been used for letter-to-phone conver-

sion. For example, decision trees [98], knowledge-based rules [46], pronunciation

by analogy [39], neural networks [8], and HMMs [142]. These other techniques

typically perform worse than the graphone approach. For a comparison of gra-

phones versus some of these other techniques, see [19].

While some open vocabulary recognition techniques aim to just detect an

OOV word without providing the spelling (e.g. [12], [166]), I will focus here on

techniques that can produce an OOV’s letter sequence.

To my knowledge, Galescu [55] was the first to incorporate sub-word units

into a recognizer’s vocabulary. He tested units that were constructed by using a

mutual information criteria to merge automatically learned letter-phone pairings.

Similar to my work, he also used a special pseudo-letter to present the end of a

word. He performed recognition using a 3-gram with 20K in-vocabulary words

and 11K sub-word units. He tested on two small test sets of 92 and 94 utterances

with OOV rates of 2.4% and 3.9% respectively. His system obtained 0.7% and

1.9% relative WER reductions. Using a similar number of graphones (12K), I was

able to obtain a much higher WER reduction of 14% relative at an OOV rate of

2.3%.

My best-path word+graphone recognition experiments were very similar to

the experiments reported by Bisani and Ney [18]. Using 20K in-vocabulary words

and 12K graphones, they obtained a 15% relative WER reduction at an OOV rate

of 2.6%. I trained a model with a similar number of 12K 1–5 graphones and got a

relative reduction of 14%. Their best performing result used 1–4 graphones and

they reported degraded accuracy for longer graphones. My results on the other

hand, showed additional accuracy gains were possible using longer graphones.

Using 40K 1–7 graphones, I obtained a 21% relative WER reduction. My longer

graphone models had substantially more graphones than the models they report.

I speculate that their degraded performance may have been due to over-pruning

of their graphone inventory.

A technique based on phone recognition is described in Decadt et al. [42].

A phone sequence is recognized using a 5-gram phone language model and then

205

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

converted to letters using a memory-based machine learner [38]. Using a word

recognizer, they had a WER of 14.7% on a Dutch test set (3.5% OOV at 40K

vocab). Using a phone recognizer and converting to letters using their memory-

based learner, they had a WER of 44.8%. This poor result suggests that phone-

based recognition may not be powerful enough to provide good open vocabulary

recognition accuracy.

In Siivolta et al. [132], a set of 64K likely Finnish sub-word “morph” units were

learned using the minimum description length principle. The morphs consisted of

just chunks of letters since the mapping from letters to phones is mostly trivial in

Finnish. They compared recognition performance using 3-gram language models

trained either on morphs, syllables, or conventional words. Due to the huge

number of word forms in Finnish, the 64K word language model had a high 20%

OOV rate. They found morph units performed the best, reducing WER by 22%

relative. This approach is less likely to be successful in English due to the lower

overall OOV rates of word-based language models and also English’s non-trivial

mapping of letters to phones.

In order to recognize spoken search queries, I automatically generated pro-

nunciations for words not in the CMU dictionary. In Lööf et al. [100] and Gollan

et al. [60], pronunciations were automatically generated using graphones to cover

the most frequent OOV words in a corpus of parliamentary speeches. They found

adding the OOV words to the lexicon reduced WER slightly (1.7% relative [100],

1.4% relative [60]).

There has been very little work on the recognition of spoken search queries.

Franz and Milch [53] built a speech interface to the Google search engine using

a commercial speech recognizer. Their interface took queries over the phone

and results were viewed in a desktop web browser. In order to obtain real-time

performance, they used a unigram language model. They learned common pairs

of words in order to boost the recognition accuracy of the unigram model. They

trained their model on 20M queries (compared to my smaller collection of 9M

queries). On a test set of 18 speakers making 809 queries, their recognition was

completely correct 43% of the time. On my test set of 4 speakers and 776 queries,

206

6.11 Conclusions

recognition was completely correct 48% of the time.

Sherwani et al. [129] created a voice interface to Wikipedia. They used a

commercial recognizer and a 100K unigram language model. In a user study,

they tested the voice interface and a smart phone implementation that used T9

or multitap for query entry. No difference in task success was found between

the two interfaces. In the voice interface, the initial recognition was completely

correct 58% of the time. They found using speech was faster for entering queries,

but slower for navigation tasks. Users reported preferring the non-speech smart

phone interface.

6.11 Conclusions

In order to build a system to recognize search queries, I first had to address the

handling of the large and diverse vocabulary typical of search queries. I did this

by first investigating the use of graphones for letter-to-phone conversion. I would

make the following recommendations to anyone interested in using graphones for

letter-to-phone conversion:

1. Graphone model size – Use small graphones coupled with a long-span

language model. I found 0–1 graphones and a long-span 6-gram language

model performed well.

2. Graphone initialization – For small graphones, the graphone inventory

can be initialized with a set of all possible graphones and the initial graphone

probabilities set to be equal.

3. Training method – Train graphones using Viterbi instead of EM. Viterbi

is almost as good as EM and much simpler to implement.

4. Smoothing method – Choose a language model smoothing method such

as interpolated Kneser-Ney.

5. Iterative training – Only small gains were seen iteratively training the

language model. It is simpler and almost as accurate to train the language

model in a single-pass directly on the unigram graphone segmentation.

207

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

6. Count cutoffs – Avoid using count cutoffs during language model training.

7. End-of-word letter – Avoid using an end-of-word letter if word boundaries

are already known.

After obtaining state-of-the-art letter-to-phone performance from graphones,

I trained a hybrid language model containing both words and graphones. I tried

a number of novel ideas to try and improve word+graphone recognition. First, I

developed a new algorithm that allows the creation of open vocabulary confusion

networks (OVCN) containing both in- and out-of-vocabulary words. I showed

that using OVCNs provided small, but consistent improvements over existing

best-path techniques. They also allow a convenient way to incorporate OOV

alternatives into a correction interface like Parakeet.

Second, I implemented a two-step alignment process in which my best letter-

to-phone model was used to obtain phone sequence for OOV words in the word+

graphone language model training text. These phone sequences were then used as

a constraint when segmenting OOVs using the model that would be used during

recognition. The two-step alignment process provided only a small advantage.

Third, I examined having different penalties for in-vocabulary words, OOV

units, and end-of-word OOV units. To my knowledge, all previous word+gra-

phone research has used the same word insertion penalty for all lexical entries. I

found that using a single penalty for all lexical types was in fact close to optimal.

I described the corpus I collected of over 10M search queries. Using this

corpus, I showed how to train a good language model for search queries. I found

that a vocabulary using inferred pronunciations was much better at recognizing

queries than a vocabulary limited to a fixed pronunciation dictionary. I took

advantage of this technique in a system I built to recognize spoken search queries

on a mobile device. In a user study, I found that participants were able to speak

and correct a search query in about 18 seconds with an entry rate of 1.7 cps

(20 wpm). This was despite a high overall WER of 48%.

In conclusion, I believe that with an appropriate out-of-vocabulary model, a

large search query corpus, and an efficient correction interface, speech recognition

208

6.11 Conclusions

has the potential to be a fast and effective entry method for searching the web.

209

CHAPTER 6. OPEN VOCABULARY RECOGNITION FOR WEB
SEARCH

210

Chapter 7

Conclusions

In this thesis, I have examined how to improve the process of correcting speech

recognition errors. I first looked at the problem of helping users detect errors. A

recurring idea in the speech recognition field has been to use confidence scores

to annotate recognition results. I conducted an experiment to test if users would

be faster, or more accurate, at finding recognition errors if potential errors were

visualized by underlining them in a shade of red. I found that confidence visu-

alization neither hurt nor helped users detect errors. However, when errors were

correctly visualized, users were more likely to detect them. But this advantage

was offset by the user missing errors that were not correctly visualized.

Next, I looked at how users changed their speech during spoken corrections.

I found users adopted a more hyperarticulate speaking style during corrections,

changing their speaking rate, pausing, pitch, intensity, and formant frequencies.

Despite these changes, I found no significant difference in recognition accuracy

between normal and hyperarticulate utterances. I found the recognition of word

or phrase corrections was particularly problematic. By adapting my acoustic

model on correction-style speech, I obtained a 13% relative reduction in word

error rate (WER) on spoken corrections.

I then developed two novel interfaces for the correction of speech recognition

errors. The first was Speech Dasher. Speech Dasher uses a continuous zooming

interface to allow navigation through the space of recognition hypotheses. For

211

CHAPTER 7. CONCLUSIONS

words not in the recognition hypothesis space, Speech Dasher supports easy fall-

back to a letter-by-letter predictive spelling of words. In a formative user study,

participants used speech and gaze to write at 40 words per minute (wpm). This

was despite a recognition WER of 22%. Using Dasher without speech, partici-

pants were substantially slower with an entry rate of 20 wpm.

The second interface I described was Parakeet: a touch-screen interface de-

signed for efficient mobile text entry. Parakeet is based on selecting words from

a word confusion network. In computational experiments, I observed that about

half of all recognition errors could be corrected via Parakeet’s word confusion

network interface. With the inclusion of a predictive software keyboard, Para-

keet enabled users to correct any error. In a user study, participants were able to

write at 13 wpm while walking outdoors. This was despite a recognition WER of

26% and significant recognition delays. Neglecting the recognition delays, users

could have written at up to 26 wpm outdoors. As a reference point, users of T9

wrote at 16 wpm while seated indoors after 15 sessions [162].

Finally, I investigated the problem of searching the web by voice. Using a

simple model that describes letter and phone pairings, I showed that standard

language modeling techniques can provide state-of-the-art letter-to-phone accu-

racy. I described how to extend existing techniques to recognize new words while

maintaining a word lattice structure. This allowed the creation of open vocabu-

lary word confusion networks containing both in- and out-of-vocabulary words.

I took advantage of these techniques to test mobile entry of web search queries

using the Parakeet interface. In a user study, I found users spoke and corrected

search queries in about 18 seconds. This was despite a recognition WER of 48%.

As a reference point, users entering text queries to Google using a phone or PDA

took about 40 seconds [79].

7.1 Final Thought

In this thesis, I have shown that speech recognition does not need to be perfect

to be useful. Even at high error rates, interfaces that leverage all the recognition

212

7.1 Final Thought

information can yield efficient and easy to use speech interfaces. A good correction

interface will degrade gracefully, gleaning whatever useful information is available

from the user’s speech. In this manner I believe we can improve the productivity

and satisfaction of speech recognition users.

213

CHAPTER 7. CONCLUSIONS

214

Appendix A

Speech Recognition Basics

In this appendix, I provide a basic overview of the speech recognition process.

My goal is to give the reader enough background to understand the interfaces and

experiments described in this thesis. For a more in-depth treatment of statistical

speech recognition, see [34; 76; 78].

A.1 Statistical Formulation

Speech recognition is the search for the best word sequence Ŵ given an audio

recording O:

Ŵ = argmax
W

P (W |O) . (A.1)

Using Bayes’ rule, this can be written as:

Ŵ = argmax
W

P (O|W)P (W)

P (O)
. (A.2)

The denominator in (A.2) can be dropped since it is invariant during the

search for the best word sequence Ŵ :

Ŵ = argmax
W

P (O|W)︸ ︷︷ ︸
acoustic
model

P (W)︸ ︷︷ ︸
language

model

. (A.3)

215

APPENDIX A. SPEECH RECOGNITION BASICS

Speech signal

Front-end

Acoustic

features

{o
1
,o
2
,...,o

t
}

Decoder

Recognition

result(s)

the cat sat

Pronunciation

dictionary

Acoustic

model

Language

model

Figure A.1: Overview of the process and components involved in speech recognition.

The first part of (A.3) is the likelihood of the audio recording given a word

sequence hypothesis and is called the acoustic model. The second part of (A.3)

is the prior probability of the word sequence and is called the language model.

Figure A.1 provides a graphical depiction of the speech recognition process

and its major components. In the rest of this appendix, I will describe the details

of each component.

A.2 Acoustic Modeling

A.2.1 Front-end Processing

The acoustic model’s job is to decide how probable the audio signal O is given a

particular word sequence. The audio signal is discretized into a large number of

samples per second (e.g. 16,000 samples per second for wideband audio or 8,000

samples per second for narrowband audio). Each sample can take on a large

number of values (typically 216).

Recognition using this very high dimensional audio data would be difficult.

So instead, a much lower dimensional representation is first calculated by the rec-

ognizer’s front-end. A commonly used representation is based on Mel-frequency

cepstral coefficients (MFCCs) [41]. The original audio is segmented into short

segments (around 25 ms) and a set of MFCCs (often 13) is calculated for each

segment. To help capture longer-term trends in the these features, the deltas

216

A.2 Acoustic Modeling

(velocity) and delta deltas (acceleration) of the MFCCs can be concatenated to

the feature vector. Thus the original acoustic signal O is assumed to be well

represented by a sequence of acoustic observations:

O ≈ {o1, o2, ..., ot} (A.4)

where each oi is a low-dimensional (typically 39-dimensional) feature vector de-

rived from the original signal.

Normally, to improve recognition accuracy, the mean of an utterance’s acoustic

features is subtracted from each frame of audio in that utterance. This technique,

known as cepstral mean normalization/subtraction [99], typically uses the entire

audio of an utterance to compute the cepstral mean. If recognition is to be

performed on “live” streaming audio, a prior window of audio can be used to

estimate the mean.

A.2.2 Hidden Markov Models

In order to search over different word sequence hypotheses, the acoustic likelihood

of the observations given a particular word sequence W is needed:

P (o1, o2, ..., ot|W) . (A.5)

Currently, the predominant model for estimating this probability is the hidden

Markov model (HMM). An HMM is a generative model that uses a finite state

machine. States in the HMM generate acoustic observations from a multi-variate

Gaussian distribution (often a mixture of Gaussians). When a mixture of Gaus-

sians is used, each state has a set of mixture weights and those weights sum to

one. Each Gaussian has a mean and a covariance matrix. In order to limit the

number of model parameters, a diagonal covariance matrix is often used.

Figure A.2 shows a very simple HMM that can generate only three words

“the”, “cat”, and “sat”. Each word in this example HMM has three states. Each

state generates an acoustic observation and then either transitions to itself (a

self-loop), or transitions to the next state in the word. After finishing a word,

217

APPENDIX A. SPEECH RECOGNITION BASICS

cat

the

sat

Figure A.2: An example HMM for recognizing the words “the”, “cat” and “sat”. Each

word has three output states with a single Gaussian distribution in each output state.

The solid black states are non-generating states and are used to combine the three word

models into a single overall model.

the HMM loops back to the start, allowing another word to be generated, and so

on. The transitions out of each state have probabilities and those probabilities

sum to one.

Different paths through an HMM for a given word sequence may result in a

different numbers of observations. For example, in figure A.2, the word sequence

“cat” might generate only three observations (one at each state), or it might gen-

erate multiple observations at a particular state by using the self-loop transition.

This mechanism helps HMMs handle variability in how fast or slow words are

pronounced.

For further details about HMMs including how the model parameters are

trained, see [121].

A.2.3 Sub-word Units

For large vocabulary recognition tasks (such as dictating an email), using a word-

level HMM like figure A.2 is problematic. This is because the number of word

models in the HMM would be very large and training reliable estimates for the

parameters of each word model would be difficult. Instead, large vocabulary

218

A.2 Acoustic Modeling

Word Probability Phone sequence

the 0.7 dh ah

the 0.3 dh iy

cat 1.0 k ae t

sat 1.0 s ae t

Table A.1: An example pronunciation dictionary containing three words. These three

words are pronounced using 7 different phones: dh , ah , iy , k , ae , t , and s .

speech recognition normally uses sub-word HMM units. A commonly chosen sub-

word unit is the phone. A phone is a unit representing a particular speech sound

in a language. To create an HMM using phones, first a mapping is needed between

each word and its phone sequence (or possibly multiple phone sequences). An

example pronunciation dictionary is shown in table A.1. Optionally, each entry

for a word can have an associated pronunciation probability.

Using the pronunciation dictionary, an HMM is constructed concatenating

together phone models based on a word’s entry in the dictionary. Figure A.3

shows an example monophone acoustic model for a three word vocabulary. A

monophone model has a single HMM for each of the phone units. Monophone

models do not take into account changes that might occur to a particular phone

due to its phonetic context (i.e. the phones appearing before or after it). While

in figure A.3 some of the phone models appear multiple times, in practice these

phone models would only be represented once with a single set of model param-

eters. This allows more robust estimation of the parameters since training data

can be shared between words that have phones in common.

Since a phone’s pronunciation can depend on the sounds before or after it,

triphones are often used instead of monophones. A triphone represents how a

particular base phone is realized given the phone before it and after it. In word

internal triphones, the surrounding phonetic context does not include any phones

from preceding or following words (i.e. the first phone of every word has no left

phonetic context and the last phone of every word has no right phonetic context).

In cross-word triphones, phonetic context crosses word boundaries.

219

APPENDIX A. SPEECH RECOGNITION BASICS

sat

cat

the1

ahdh

the2

iydh

k ae t

s ae t

Figure A.3: An example HMM using phone models. This HMM can recognize the

words “the”, “cat” and “sat”. Each word is made up of two or three phone models.

The word “the” has two different pronunciation variants.

State-of-the-art recognizers usually use cross-word triphones (or even quin-

phones). In practice, there is not enough training data to reliably estimate tri-

phones because there are so many of them. For example, in English there are

around 403 different triphones (although not all of these will be observed in prac-

tice).

A popular approach to robustly estimate parameters despite training data

sparsity is parameter tying. In parameter tying, particular sets of parameters can

be shared between multiple triphone models. So for example, the parameters

of the Gaussian mixture model might be tied among triphone states that are

“similar”. The similarity between states might take into account whether different

triphones share the same base phone, appear in a similar phonetic context, etc.

The tying of parameters can be found automatically by generating a decision tree

that uses a set of linguistically motivated questions [171].

A.2.4 Semi-continuous Models

A large vocabulary recognizer may have thousands of tied-states. Each state in

turn has its own mixture of Gaussians. The calculation of the acoustic likelihoods

220

A.2 Acoustic Modeling

for all these Gaussian distributions can be computationally demanding.

An alternative approach is to use a semi-continuous acoustic model [73]. In

a semi-continuous model, there is a single large pool of continuous Gaussian

distributions. Each HMM output state has a set of mixture weights that control

how important each Gaussian in the pool is for modeling speech in that state.

This saves computation as the acoustic likelihood for an observation only needs

to be calculated once for each Gaussian in the pool. Semi-continuous models are

typically not as accurate as models with independent Gaussians at each state. I

used semi-continuous models periodically in this thesis when real-time recognition

was required.

A.2.5 Speaker Adaptation

The parameters of the acoustic model are normally trained on a large corpus of

speech with known word transcriptions. This generates a speaker-independent

acoustic model. The accuracy of the speaker-independent model can usually be

substantially improved by performing speaker adaptation. In speaker adaptation,

the parameters of the acoustic model are altered to better reflect an individual’s

voice. Adaptation can be supervised or unsupervised. In supervised adaptation,

the text transcriptions of the adaptation utterances is known. In unsupervised

adaptation, the text transcriptions are not known and a surrogate such as the

best recognition result must be used instead.

In this thesis, I performed supervised adaptation using two popular tech-

niques. The first is maximum likelihood linear regression (MLLR) [96]. In MLLR

adaptation, a linear transform is computed that shifts the parameters of the

acoustic model so as to maximize the likelihood of the adaptation data. A single

MLLR transform can be computed for all Gaussians in an HMM. Alternatively,

a number of different transforms can be computed. Each different transform ap-

plies only to a group of states that are “close” in acoustic space. The grouping

of states can be found automatically using a regression class tree [54; 95]. MLLR

adaptation tends to perform well even on small amounts of adaptation data.

221

APPENDIX A. SPEECH RECOGNITION BASICS

The second form of adaptation is maximum a posteriori (MAP) adapta-

tion [59]. In MAP adaptation, the model parameters are interpolated between a

prior estimate (the speaker-independent parameters) and a maximum likelihood

estimate based on the adaptation data. The degree to which the adaptation data

influences the parameters is controlled by a settable parameter τ . Compared with

MLLR, MAP adaptation typically requires more data in order to perform well.

Given sufficient data, MAP adaptation tends to perform as well as an acoustic

model trained just on the speaker’s voice.

For a review of popular speaker adaptation techniques, see [163].

A.3 Language Modeling

The language model’s job is to decide how probable a particular word sequence

W is. This is normally done using a model that assumes the next word depends

only on the prior history of words:

P (W) =
k∏
i=1

P (wi|wi−1, wi−2, ..., w1) (A.6)

where wi denotes each of the k words in the word sequence W .

The most common form of language model is the n-gram language model. In

an n-gram language model, the next word depend only on the prior (N−1) words:

P (W) ≈
k∏
i=1

P (wi|wi−1, wi−2, ..., wi−N+1) . (A.7)

A language model has an associated vocabulary. The vocabulary defines all

words that the language model can make predictions about. All the words in

the vocabulary must have an entry in the recognizer’s pronunciation dictio-

nary. If a word is not in a language model’s vocabulary, it is said to be out-

of-vocabulary (OOV).

222

A.3 Language Modeling

A.3.1 Training

An n-gram language model is estimated by counting the number of times a par-

ticular word appears in a given prior context of words in the training data. In

a unigram language model, the prior context is ignored and a word’s probability

depends only on how often it occurred in the training text. In a bigram language

model, a single word of prior context is used. In a trigram language model, two

words of prior context are used.

For large amounts of training data, representing every n-gram seen in the

training data may require too much storage. During training, a count cutoff

can be used. A count cutoff causes n-grams occurring only a small number

of times to be treated as if they had never occurred. An alternate is entropy

pruning [137]. In entropy pruning, first a language model is trained without

count cutoffs. The language model is then pruned to remove n-grams that do

not contribute significantly to predicting the training text. Note that entropy

pruning still requires that the initial unpruned model be small enough to fit

within memory.

A.3.2 Smoothing and Interpolation

Using the raw counts to estimate the probabilities in (A.7) is problematic. The

training data is unlikely to contain instances of every word in every possible prior

context. For example, even if “the cheetah sat” was never seen in the training

text, the probability of seeing “sat” after “the cheetah” should probably still be

greater than zero. This problem is addressed by smoothing. In smoothing, some

probability mass is reserved for events unseen in the training text.

While smoothing allows non-zero probability for the word “sat” after “the

cheetah”, it does not make use of information known about the distribution of

words that follow the shortened context of “cheetah”. The language modeling

techniques of backoff and interpolation specify how this information is incorpo-

rated. In backoff, only if “the cheetah sat” was never seen in the training data

223

APPENDIX A. SPEECH RECOGNITION BASICS

is the shortened context used to estimate the probability of “sat”. In interpola-

tion, the shortened context is always used to inform the estimate for the longer

context.

For an overview and empirical evaluation of language model smoothing, back-

off, count cutoffs, and interpolation, see [29].

A.4 Decoding

In speech recognition, decoding refers to the process of finding the most likely word

hypothesis (or hypotheses) given the acoustic signal. Decoding normally uses

the Viterbi algorithm to efficiently search the space of possible word sequences.

Viterbi is a classic dynamic programming approach that makes the search efficient

by utilizing the fact that observations are conditionally independent given the

generating state in the HMM.

The hypotheses considered by the decoder need an aggregate likelihood that

combines the acoustic and language model likelihoods. This combination is nor-

mally done using an empirically determined language model scale factor. The

language model scale factor helps balance the difference in dynamic range be-

tween the likelihoods of the acoustic and language model. This is necessary due

to incorrect assumptions made by the models. An additional empirically deter-

mined word insertion penalty is also commonly used. The word insertion penalty

causes each word in a hypothesis to incur a fixed penalty. The word insertion

penalty helps reduce the number of insertion errors.

Normally a decoder computes likelihoods in the log domain to prevent numeric

underflow. So in the log domain, the search for the best hypothesis takes the form:

Ŵ = argmax
W

lnP (O|W) + α lnP (W) + βL (A.8)

where α is the language model scale factor, β is the word insertion penalty, and

L is the number of words in hypothesis W .

224

A.5 Result Representations

Note that if the pronunciation dictionary contains probabilities, (A.8) would

also contain a term for the pronunciation probability and a pronunciation scale

factor.

For large vocabulary recognition, it is not typically possible to search over all

possible word sequences. In order to keep decoding computationally tractable,

beam search is normally used. In beam search, word hypotheses that become too

improbable compared to the current best hypothesis are discarded. This form of

pruning is not admissible and can cause search errors. The beam width controls

the trade-off between recognition speed and the number of search errors.

The decoder may want to return not only the best hypothesis, but also other

competing hypotheses. A conceptual framework for doing this is token pass-

ing [172]. In token passing, virtual tokens explore the search space of possible

hypotheses. Each token keeps tracks of its probability, its current location in

the HMM model, and its past word history. The token passing search normally

uses beam width pruning to remove improbable tokens. The search also typically

limits the total number of tokens in any particular HMM state.

For an overview of different decoding strategies for speech recognition, see [11].

A.5 Result Representations

The results of recognition can be represented in a variety of ways:

• 1-best – The 1-best result is simply the best sequence of words found during

the decoder’s search.

• N-best list – An n-best list is the the set of top hypotheses found during

the search. These hypotheses are listed in order from most probable to least

probable. The list can be limited to a fixed number of hypotheses.

• Word lattice – A word lattice is a directed acyclic graph where each path

through the graph is a recognition hypothesis (figure A.4). The nodes in

the lattice have a word label and a time. The edges between nodes contain

the acoustic and language model likelihoods of that transition.

225

APPENDIX A. SPEECH RECOGNITION BASICS

<s> the

cat

at

sat

</s>

-10,-2

-20,-3

-70,-10
-20,-7

-40,-6

-10,-4

-30,-9

-60,-1
-40,-3-90,-11

rat

bat

Figure A.4: An example recognition word lattice. The numbers on the edges represent

acoustic and language model log likelihoods.

the 1.0

bat 0.1

sat 0.5

at 0.3

cat 0.6

rat 0.3

delete 0.2

Figure A.5: An example word confusion network. The numbers on the edges represent

posterior probabilities.

Lattices have several advantages to n-best lists. First, they can represent

many more possible hypotheses. Second, they contain useful information

about the recognizer’s search such as times, acoustic likelihoods, and lan-

guage model likelihoods. Third, lattices allow easy post-processing of the

recognition hypothesis space. For example, a lattice can be expanded and

rescored with a longer-span language model to improve recognition accu-

racy.

• Word confusion network – A word confusion network [104] is a time-

ordered set of clusters where each cluster contains competing word hypothe-

ses along with their posterior probabilities (figure A.5). The word confusion

network is built from the lattice generated during the speech recognizer’s

search. The best recognition results, or consensus hypothesis, is found by

taking the highest probability edge in each cluster. Word confusion net-

works can contain a “delete” pseudo-word. The delete word represents the

hypothesis that nothing was said in that particular cluster.

Word confusion networks have several advantages to lattices. First, they

are much more compact. Second, the best path in a word confusion network

tends to minimize the number of word errors [104]. Lattices, on the other

226

A.6 Performance Metrics

hand, tend to minimize how often the entire sentence is correct.

A.6 Performance Metrics

A variety of different metrics are used in this thesis. Here is a description of the

most important ones:

• Word error rate – The word error rate (WER) is the most common

metric used to report the accuracy of a speech recognizer. The WER is the

word edit distance required to change the recognition result into the correct

(reference) text. It is normally reported as a percentage and calculated as:

WER % = 100 · I + S +D

T
(A.9)

where I is the number of insertion errors, S is the number of substitution

errors, D is the number of deletion errors, and T is the number of words in

the reference text. Note that WER is not a probability. It can be greater

than 100% in cases were there are numerous insertion errors.

The character error rate (CER) is analogous to WER but the edit distance

is calculated based on individual characters instead of words. The CER is

a finer grain measure and allows a word to “get credit” for being close to a

reference word (e.g. differing in only say pluralization or ending).

• Real-time factor (×RT) – The real-time factor measures how much time

decoding took as compared to the audio length of an utterance. For exam-

ple, if a 10 second utterance took 20 seconds to recognize, the recognizer

performed at 2×RT.

• Cross-entropy – As used in this thesis, the cross-entropy measures how

well a particular language model predicts events in some test text. The

lower the cross-entropy, the better the language model predicts the text.

The cross-entropy is the average number of bits of information provided by

each word:

HP (W) = − 1

L
log2 P (W) (A.10)

227

APPENDIX A. SPEECH RECOGNITION BASICS

where W is the test text, L is the number of words in W, and P(W) is the

probability of W under the language model.

• Perplexity – The perplexity measures the average number of “choices”

a language model has when predicting the next word. For example, if a

language consists entirely of the digits 0–9 and those digits are equally

probable, the perplexity of the language is 10. The perplexity is calculated

from the cross-entropy as follows:

PPP (W) = 2HP (W) . (A.11)

• Out-of-vocabulary rate – The out-of-vocabulary (OOV) rate is the per-

centage of words in a given text that are not in the recognizer’s vocabulary.

This is important as OOV words are bound to be recognized incorrectly.

Furthermore, OOV words tend to cause “collateral damage” to nearby in-

vocabulary words [164].

228

Appendix B

Corpus of Spoken Dictation and

Corrections

B.1 Detail of Tasks

This section lists the sentences and corrections collected in the corpus of spo-

ken dictation and corrections. The correct target sentence is listed first in each

block. This sentences was read twice, once before any simulated errors (part

one of experiment) and once before any errors on that particular sentence (part

two of experiment). The highlighted portion of the first sentence (if any) shows

which words were asked for during users’ correction attempts. Words with a †

superscript indicate a word that the user was asked to spell in the last correction

attempt. Subsequent lines (if any) show the simulated errorful recognition results

presented to the user. Words in red and italics were the simulated word errors

and were presented to the user. The first two tasks listed below were the practice

sentences. The remaining 40 tasks were given to users in random order.

1. when we moved in there was barely a tree around

when we moved in there was bear lee a tree around

when we moved in there was pear tree around

2. the activities are fun especially the trips curtis† said

the activities are fun especially the trips kurt said

the activities are fun especially the trips court said

229

APPENDIX B. CORPUS OF SPOKEN DICTATION AND
CORRECTIONS

3. i found four pieces of gold

4. we went on a gold mining tour

we went on a gold mining tool or

we went on a gold mining or

we went on a gold mine in tool

5. but the get together wasn’t about making salad

but they get together was in about making salad

but the get together was in about making salad

but to get together was it about making salad

but the get together was an about making salad

6. grin has been signed to a two year contract

green had been signed to a too year contract

current has been signed to a two year con tract

drain has been signed to a two year contract

7. the bank forecast a slight profit for the full year

8. city income plummeted creating the worst budget crisis in a decade

city income plummeted trading the worst budget crisis in a decade

city income plummeted grading the worst budget crisis in a decade

city income plummeted trading the worst budget crisis in a decade

9. a recent trip to columbia state park stands out in his mind

the recent trip to columbia state park stands out in his mind

our recent trip to columbia state park stands out in his mind

but recent trip to columbia state park stands out in his mind

10. in fact even some english speaking parents felt left out of the loop

11. because he is still in office no one can be appointed to replace him

because he’s ill an office no one can be appointed to replace him

because he’s bill and office no one can be appointed to replace him

because he’s still an office no one can be appointed to replace him

12. her father billy jones started driving the store’s horse drawn delivery wagon at age twelve

her father billy jones started driving the stores horse drawn delivery weighed in at age twelve

her father billy jones started driving the stored horse drawn delivery weigh and at age twelve

13. at midday wells fargo stock was up three dollars to sixty dollars and twenty five cents

14. participants come from throughout the county

participants come from throughout that county

participants come from throughout pick county

participants come from throughout rick county

participants come from throughout but county

230

B.1 Detail of Tasks

15. in tough times people look to mayors

16. no one has publicly called for him to step down

no one has published cleat called for him to step down

no one has public cleat called for him to step down

no one has public eat called for him to step down

17. the dividend was reduced in order to strengthen our capital ratios

18. his white three bedroom house was the direct victim of the construction

is white three bedroom how’s was the direct victim of the construction

in his white three bedroom house was the direct victim of the construction

and white e bedroom house was the direct victim of the construction

this white three bedroom house was the direct victim of the construction

19. although the line to get in seemed long we were seated quickly both times

although the light to get in seen long we were seated quickly both times

20. a free house was a privately owned pub that purchased ale from a variety of breweries

the free house was a privately owned pubs that purchased gail from a variety of breweries

a free house was a privately owned pubs that purchased gale from a variety of breweries

a free house was a privately owned pubs that purchased gayle from a variety of breweries

21. they have english† but it’s geared for the anglo

they have been pushed but it’s geared for the anglo

they have been with but it’s geared for the anglo

they have been bush but it’s geared for the anglo

22. it is served with a bit of cognac and available daily

it is served with a bit of cold yak in available daily

it is served with a bit of colon yak in available daily

23. we sampled all but the dark brew

we sampled all but the dark per

we sampled all but the dork per

we sampled all but the darker brew

24. the serving filled the platter and was only nine dollars

25. we wanted to document them on tape before it escapes

we wanted to document them on tape the forty skates

26. he also recalls the eccentric old hermit† who lived nearby

he also recalls b is centric cold permit who lived nearby

he also recalls the centric cold permit who lived nearby

he also recalls it d centric old permit who lived nearby

he also recalls the eccentric old earn it who lived nearby

he also recalls the eccentric old permit who lived nearby

231

APPENDIX B. CORPUS OF SPOKEN DICTATION AND
CORRECTIONS

27. during both visits the restaurant and outdoor patio were bustling

28. one speaker even claimed that occult† youth gangs threaten modern teenagers

one speaker even claimed that a colt youth gangs threaten modern teenagers

one speaker even claimed that a cold youth gangs threaten modern teenagers

one speaker even claimed that a colt huge gangs threaten modern teenagers

one speaker even claimed that a colt youth gangs threaten modern teenagers

29. but ingram† added it hasn’t been an easy time for him

but ingramham padded it hasn’t been an easy time for him

but in from padded it hasn’t been an easy time for him

but ingramham added it hasn’t been an easy time for him

30. to accompany your meal you can choose a pale amber or dark brew

to accompany your meal you can choose a pale amber word park peru

to accompany your meal you can choose a pale amber word parked for

31. when the district held a parent conference saturday the coffee and doughnuts were still plentiful

when the district held the parent conference saturday at the coffee and doughnuts were still plentiful

when the district held the parent conference saturday of the coffee and doughnuts were still plentiful

when the district held a parent conference saturday at the coffee and doughnuts were still plentiful

when the district held a parent conference saturday an the coffee and doughnuts were still plentiful

32. bulldozers were digging up dirt just a few yards from his corn crops last week

bull over digging up dirt just a few yards from his corn crops last week

he dozing it up dirt just a few yards from his corn crops last week

bulldozers we’re digging up dirt just a few yards from his corn crops last week

33. the lobster bisque however is quite good

the lop stirred this carver is quite good

the lop stirred this column is quite good

the lock stirred this carver is quite good

34. arcadia officials declined to comment on jio’s† situation

arcadia officials declined to comment on geo’s situation

arcadia officials declined to comment on geos situation

arcadia officials declined to comment on geode situation

35. the linguine† was sauteed with mushrooms bay shrimp and prawns

the lean guniea was sauteed with mushrooms bay shrimp and prawns

the lint green was sauteed with mushrooms bay shrimp and prawns

the lent guniea was sauteed with mushrooms bay shrimp and prawns

the new guinea was sauteed with mushrooms bay shrimp and prawns

the lynn guinea was sauteed with mushrooms bay shrimp and prawns

36. he would come out of his house with an ax and no clothes on korts said

he would come out of his house with a tax and no clothes on courts said

he would come out of his house with a ax and no clothes on ports said

he would come out of his house with an ax and no clothes on court said

232

B.2 All Cumulative Distributions

37. but he still carries a caseload as heavy as ware’s†

but he still carries a caseload is heavy as where’s

but he still carries a caseload as heavy as where’s

but he still carries a caseload as heavy as wares

38. we had our first reunion last year said nona† christensen sixty six

we had our first reunion last year’s said no one christensen sixty six

we had our first reunion last year said no one christensen sixty six

we had our first reunion last year said none christensen sixty six

39. a handful of specialty brews are listed on blackboards throughout the restaurant

a handful of specialty brews are listed on blackboards throughout the rest

a handful of specialty brews are listed on blackboards throughout the rest aunt

a handful of specialty brews are listed on blackboards throughout the rest

a handful of specialty brews are listed on blackboards throughout the rest aught

40. quality and economy are obviously the two watchwords at gerard’s† in downtown san jose

quality and economy are obviously the two watchwords and gerard in downtown san jose

quality and economy are obviously the two watchwords at gerard in downtown san jose

quality and economy are obviously the two watchwords at jerrad is in downtown san jose

41. michael woodmansee† spent an evening in the kitchen with his friends throwing together three salads

michael wood nancy spent to demean the kitchen with his friends throwing together three salads

michael would nancy the demean the kitchen with his friends throwing together three salads

michael would man see spent an evening in the kitchen with his friends throwing together three salads

42. korts said their parents bought a summer home between love and fritch creeks in nineteen eighteen

quartz said their parents bought a summer home between loved and fritsch creeks in nineteen eighteen

courts said their parents bought a summer home between love and fritsch creeks in nineteen eighteen

quartz said their parents bought a summer home between loved and fritsch creeks in nineteen eighteen

B.2 All Cumulative Distributions

In this section, I give all the cumulative distributions of acoustic properties which

I analyzed in section 3.3. The dotted lines in graphs indicate two-sigma error bars

(calculated using the method in appendix D.1).

233

APPENDIX B. CORPUS OF SPOKEN DICTATION AND
CORRECTIONS

100%

80%

60%

40%

20%

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

C
um

ul
at

iv
e

Speaking rate (syllables/second)

pre
init

err1-4

(a) Speaking rate, claim: err1-4 < init < pre

100%

80%

60%

40%

20%

0.00 0.01 0.10
C

um
ul

at
iv

e

Inter-word pauses (seconds/word)

pre
init

err1-4

(b) Inter-word pausing, claim: pre < init < err1-

4

100%

80%

60%

40%

20%

60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0

C
um

ul
at

iv
e

Pitch min (Hz)

pre
init

err1-4

(c) Pitch min, claim: err1-4 < pre, init

100%

80%

60%

40%

20%

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0

C
um

ul
at

iv
e

Pitch mean (Hz)

pre
init

err1-4

(d) Pitch mean, claim: no difference

100%

80%

60%

40%

20%

100.0 200.0 300.0 400.0 500.0 600.0

C
um

ul
at

iv
e

Pitch max (Hz)

pre
init

err1-4

(e) Pitch max, claim: pre < init < err1-4

Figure B.1: Cumulative distributions of speaking rate and pitch properties.

234

B.2 All Cumulative Distributions

100%

80%

60%

40%

20%

600.0 700.0 800.0 900.0 1000.0 1100.0 1200.0

C
um

ul
at

iv
e

F1 mean (Hz)

pre
init

err1-4

(a) F1 mean, claim: pre, init < err1-4

100%

80%

60%

40%

20%

1600 1700 1800 1900 2000 2100 2200 2300 2400

C
um

ul
at

iv
e

F2 mean (Hz)

pre
init

err1-4

(b) F2 mean, claim: pre, init < err1-4

100%

80%

60%

40%

20%

2500 2600 2700 2800 2900 3000 3100 3200 3300 3400

C
um

ul
at

iv
e

F3 mean (Hz)

pre
init

err1-4

(c) F3 mean, claim: pre, init < err1-4

100%

80%

60%

40%

20%

3200 3400 3600 3800 4000 4200 4400

C
um

ul
at

iv
e

F4 mean (Hz)

pre
init

err1-4

(d) F4 mean, claim: no difference

100%

80%

60%

40%

20%

3600 3800 4000 4200 4400 4600 4800 5000

C
um

ul
at

iv
e

F5 mean (Hz)

pre
init

err1-4

(e) F5 mean, claim: no difference

Figure B.2: Cumulative distributions of formants.

235

APPENDIX B. CORPUS OF SPOKEN DICTATION AND
CORRECTIONS

100%

80%

60%

40%

20%

15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0

C
um

ul
at

iv
e

Intensity min (dB)

pre
init

err1-4

(a) Intensity min, claim: err1-4 < pre, init

100%

80%

60%

40%

20%

35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0

C
um

ul
at

iv
e

Intensity mean (dB)

pre
init

err1-4

(b) Intensity mean, claim: err1-4 < pre, init

100%

80%

60%

40%

20%

65.0 70.0 75.0 80.0 85.0 90.0 95.0

C
um

ul
at

iv
e

Intensity max (dB)

pre
init

err1-4

(c) Intensity max, claim: pre < init, err1-4

Figure B.3: Cumulative distributions of intensity related properties.

236

Appendix C

Joint Multigram Derivation

As I found no detailed derivation of the joint multigram model in the literature,

I provide one here. I will use a derivation in which the role of the latent variables

is made explicit (as in Bishop [21], chapter 9). While the joint multigram model

itself is more general, I use notation and narrative specific to joint multigrams

applied to modeling letter and phone correspondences. I also assume a model in

which each graphone deterministically generates a fixed set of letters and phones.

In the original reestimation formula presented in [43; 44], the forward-

backward reestimation formula did not address training on a dictionary of

multiple, independent training examples. I provide a formula showing optimiza-

tion with respect to the entire dictionary

C.1 Latent Variable Formulation

The goal of training is to maximize the probability of the data given the model

parameters. Maximizing (6.10) is equivalent to maximizing the log:

logP (D|θ) =
N∑
n=1

log

|Sn|∑
s=1

|Sns|∏
g=1

P (GSnsg |θ) . (C.1)

The summation inside the log of (C.1) makes direct optimization of this quan-

237

APPENDIX C. JOINT MULTIGRAM DERIVATION

tity difficult. To assist optimization efforts, a latent variable vector zn is intro-

duced for each dictionary entry Dn. The vector zn specifies which of the |Sn|
possible segmentations generated Dn. zn is a |Sn|-dimensional binary random

variable having a 1-of-|Sn| representation in which exactly one zns = 1 and all

other elements are 0. If zns = 1 then the sth segmentation generated entry Dn.

Given the latent variable which specifies which segmentation a dictionary

entry used, the probability of a training example is:

P (Dn|zn,θ) =

|Sn|∏
s=1

|Sns|∏
g=1

P (GSnsg |θ)

zns . (C.2)

Letting Z denote the set of latent variables for all dictionary entries, the joint

distribution of the training data is:

P (D|Z,θ) =
N∏
n=1

|Sn|∏
s=1

|Sns|∏
g=1

P (GSnsg |θ)

zns . (C.3)

Taking the logarithm:

logP (D|Z,θ) =
N∑
n=1

|Sn|∑
s=1

zns

|Sns|∑
g=1

logP (GSnsg |θ)

 . (C.4)

The posterior probability of a particular zns will be called the responsibility

and denoted by γ(zns):

γ(zns) = P (zns = 1|Dn,θ) . (C.5)

Rewriting the responsibility using the definition of conditional probability:

γ(zns) =
P (zns = 1,Dn|θ)∑|Sns|
s=1 P (zns = 1,Dn|θ)

. (C.6)

Since zns specifies the precise segmentation to use from dictionary entry Dn,

this can be written:

γ(zns) =
P (Sns|θ)∑|Sn|
s=1 P (Sns|θ)

. (C.7)

238

C.2 Expectation Maximization

Expanding the probability of the graphone sequences using (6.8):

γ(zns) =

∏|Sns|
g=1 P (GSnsg |θ)∑|Sn|

s=1

∏|Sns|
g=1 P (GSnsg)|θ)

. (C.8)

Thus the responsibility is simply how likely a particular segmentation is in

comparison with all other segmentations for that dictionary entry.

C.2 Expectation Maximization

With the joint distribution of the data and latent variables, an expectation max-

imization (EM) algorithm can be used to find a local optimum for the model

parameters. I take a variational view of this procedure as in Neal and Hinton

[108].

Let Q(Z) be some probability distribution over the latent variables. Maxi-

mization is on a function F which is defined as:

F (Q(Z),θ) = EQ(Z)[logP (D,Z|θ)] + H[Q(Z)] (C.9)

where EQ(Z)[·] denotes the expectation with respect to the distribution Q as it

ranges over Z and H[·] denotes the entropy of a distribution.

Expanding the expectation and entropy terms:

F (Q(Z),θ) =
∑
Z

Q(Z) logP (D,Z|θ)−
∑
Z

Q(Z) logQ(Z) . (C.10)

Using P (D,Z|θ) = P (Z|θ,D)P (D|θ) this rewrites as:

F (Q(Z),θ) =
∑
Z

Q(Z) log
P (Z|θ,D)

Q(Z)
+
∑
Z

Q(Z) logP (D|θ) . (C.11)

The first term on the right hand side of (C.11) is the negative of the relative

entropy or KL divergence [90]. The second term on the right hand side of (C.11)

can be simplified noting that Q(Z) is a probability distribution and must sum to

one. Using these two facts, (C.11) can be rewritten as:

F (Q(Z),θ) = −KL(Q(Z)||P (Z|D,θ)) + logP (D|θ) . (C.12)

239

APPENDIX C. JOINT MULTIGRAM DERIVATION

As shown in [108], F can be maximized in a two-step process which is guar-

anteed to converge to at least a local maximum. The local maximum of F is also

a local maximum of logP (D|θ). The two steps are:

E step:

M step:

Holding parameters fixed, set Q(t+1)(Z) to maximize F (Q(Z),θ(t)).

Holding Q fixed, set θ(t+1) to maximize F (Q(t+1),θ).

where (t) denotes the previous time step and (t+1) denote the current time step.

In the E step, since P (Z|D,θ) is easy to compute, no approximation to the

posterior is necessary. Q(t+1)(Z) is simply taken to be P (Z|D,θ(t)). This makes

the KL divergence zero, insuring the E step does not cause F to decrease.

In the M step, F is maximized with respect to θ using the form given in

(C.9). Since the entropy does not depend on θ, the maximization is on just the

expectation:

EQ(Z) =
∑
Z

Q(Z) logP (D,Z|θ) . (C.13)

Expanding logP (D,Z|θ) using (C.4):

EQ(Z) =
∑
Z

Q(Z)
N∑
n=1

|Sn|∑
s=1

zns

|Sns|∑
g=1

logP (GSnsg |θ)

 . (C.14)

Only the terms where zns = 1 contribute to the summation. These terms are

multiplied by Q(Z) which is being held fixed at P (Z|D,θ(t)):

EQ(Z) =
N∑
n=1

|Sn|∑
s=1

P (zns|Dn,θ
(t))

|Sns|∑
g=1

logP (GSnsg |θ)

 . (C.15)

The posterior probability of the latent variable is the responsibility (C.8) using

the previous parameters θ(t):

P (zns|Dn,θ
(t)) = γ(t)(zns) =

∏|Sns|
g=1 P (GSnsg |θ(t))∑|Sn|

s=1

∏|Sns|
g=1 P (GSnsg)|θ(t))

. (C.16)

Using the responsibility, the expectation is:

EQ(Z) =
N∑
n=1

|Sn|∑
s=1

γ(t)(zns)

|Sns|∑
g=1

logP (GSnsg |θ)

 . (C.17)

240

C.2 Expectation Maximization

Instead of summing over each graphone in a particular segmentation, the sum

is taken over the I graphones in the inventory. If C(Gi|Sns) is the count of times

the graphone Gi appeared in Sns:

EQ(Z) =
I∑
i=1

N∑
n=1

|Sn|∑
s=1

γ(t)(zns)C(Gi|Sns) logP (Gi|θ) . (C.18)

Maximization of this expectation with respect to the graphone probabilities

uses the following lemma:

Lemma C.2.1. To maximize
∑

i ci log pi with respect to the set of probabilities

{pi}, set p∗i = ci∑
i ci

.

See appendix D.2 for a proof. The expectation (C.18) can be written as:

EQ(Z) =
I∑
i=1

ci log pi (C.19)

where

ci =
N∑
n=1

|Sn|∑
s=1

γ(t)(zns)C(Gi|Sns) (C.20)

pi = P (Gi|θ) . (C.21)

Using lemma C.2.1, the expectation is maximized by setting the probability

of a particular Gm to:

P (t+1)(Gm) =
cm∑I
i=1 ci

(C.22)

=

∑N
n=1

∑|Sn|
s=1 γ

(t)(zns)C(Gm|Sns)∑I
i=1

∑N
n=1

∑|Sn|
s=1 γ

(t)(zns)C(Gi|Sns)
. (C.23)

Simplifying the denominator using the count of all graphones in a sequence

C(Sns), the final reestimation formula is:

P (t+1)(Gm) =

∑N
n=1

∑|Sn|
s=1 γ

(t)(zns)C(Gm|Sns)∑N
n=1

∑|Sn|
s=1 γ

(t)(zns)C(Sns)
. (C.24)

241

APPENDIX C. JOINT MULTIGRAM DERIVATION

So at each step, a particular graphone’s probability is updated based on how

often that graphone appears in all segmentations of the training data. These

appearances are weighted according to how likely each particular segmentation

was.

C.2.1 Forward-Backward Training

Recall that dictionary entry Dn consisted of a letter sequence Xn and a phone

sequence Y n. Let |Xn| and |Y n| denote the number of letters and phones in Dn

respectively. Let (Xn) kj and (Y n) kj specify the letter/phone sequence starting at

the jth position and ending at the kth position.

The probability of a dictionary entry can be written:

P (Dn | θ) = P
(

(Xn)
|Xn|
1 , (Y n)

|Y n|
1 | θ

)
. (C.25)

The forward variable αn(x, y) accounts for the probability from the start up

to and including the xth letter and yth phone of the nth dictionary entry:

αn(x, y) = P ((Xn)x1 , (Y n) y1 | θ) . (C.26)

Similarly, the backwards variable βn(x, y) accounts for the probability of ev-

erything after the xth letter and yth phone of the nth dictionary entry:

βn(x, y) = P
(

(Xn)
|Xn|
x+1 , (Y n)

|Y n|
y+1 | θ

)
. (C.27)

Given the α and β variable formulation, all the following are equivalent:

P (Dn | θ) = αn(|Xn|, |Y n|) = βn(0, 0) =

|Sn|∑
s=1

P (Sns|θ) . (C.28)

Let qmin and qmax denote the minimum and maximum number of letters in

the model being trained. Let rmin and rmax denote the minimum and maximum

number of phones. The forward variable αn(x, y) is recursively calculated us-

ing preceding α’s that are a single graphone “hop” from location (x, y). These

242

C.2 Expectation Maximization

preceding α’s are multiplied by the probability of the graphone used to hop to

position (x, y).

So to be precise, the initial conditions are αn (0, 0) = 1 and αn (x, y) = 0 if

x < 0 or y < 0. For 0 ≤ x ≤ |Xn| and 0 ≤ y ≤ |Y n| the forward variable is:

αn(x, y) =

qmax∑
q=qmin

rmax∑
r=rmin

αn(x− q, y − r)P
(
G(x,y,q,r)|θ

)
(C.29)

where the graphone G(x,y,q,r) matches the preceding letters and phones:

`
(
G(x,y,q,r)

)
= (Xn)xx−q+1 (C.30)

ρ
(
G(x,y,q,r)

)
= (Y n) yy−r+1 . (C.31)

The beta variable’s initial conditions are βn (|Xn|, |Y n|) = 1 and βn (x, y) = 0

if x > |Xn| or y > |Y n|. For 0 ≤ x ≤ |Xn| and 0 ≤ y ≤ |Y n| the backward

variable is:

βn(x, y) =

qmax∑
q=qmin

rmax∑
r=rmin

βn(x+ q, y + r)P
(
g(x,y,q,r)|θ

)
(C.32)

where the graphone G(x,y,q,r) matches the following letters and phones:

`
(
G(x,y,q,r)

)
= (Xn)x+q

x+1 (C.33)

ρ
(
G(x,y,q,r)

)
= (Y n) y+r

y+1 . (C.34)

Note that for any letter and phone position (x, y) in a segmentation, the

probability of the segmentation can be written as:

|Sns|∏
g=1

P (GSnsg |θ(t)) = α(t)
ns(x, y)β(t)

ns (x, y) . (C.35)

Equipped with the α and β variables, an efficient way to compute the reesti-

mation formula can be found which avoids searching over all possible word seg-

mentations. From (C.22), the quantity ci contains the problematic search over

segmentations:

243

APPENDIX C. JOINT MULTIGRAM DERIVATION

ci =
N∑
n=1

|Sn|∑
s=1

γ(t)(zns)C(Gi|Sns) . (C.36)

Focusing on just the nth training example, the quantity needed is:

cin =

|Sn|∑
s=1

γ(t)(zns)C(Gi|Sns) . (C.37)

Rewriting the responsibility using (C.7) and pulling out the common denom-

inator:

cin =

∑|Sn|
s=1 P (Sns|θ)C(Gi|Sns)∑|Sn|

s=1 P (Sns|θ)
. (C.38)

Replacing the denominator with a form from (C.28):

cin =

∑|Sn|
s=1 P (Sns|θ)C(Gi|Sns)

βn(0, 0)
. (C.39)

Using this form of cin and expanding P (Sns|θ) with (6.8), the reestimation

formula (C.24) is:

P (t+1)(Gm) =

∑N
n=1

1
βn(0,0)

∑|Sn|
s=1 C(Gm|Sns)

∏|Sns|
g=1 P (GSnsg |θ)∑N

n=1
1

βn(0,0)

∑|Sn|
s=1 C(Sns)

∏|Sns|
g=1 P (GSnsg |θ)

. (C.40)

The summation of segmentation in (C.40) can now be simplified using the α

and β variables. To see this, consider the five possible paths in the example in

figure C.1. The only points in the lattice with non-zero α and β variables are

points that are on one of the five paths. The probability of any path can be

obtained by using (C.35) and a (x, y) pair on the path of interest.

If the sum of (C.35) is taken over all possible (x, y) pairs, each path’s proba-

bility appears in the sum exactly as many times as the number of lattice points

on that path:

|Xn|∑
x=1

|Y n|∑
y=1

αn(x, y)βn(x, y) =

|Sn|∑
s=1

C(Sns)

|Sns|∏
g=1

P (GSnsg |θ(t)) . (C.41)

244

C.2 Expectation Maximization

1 2 3 4

1

2

3

c ca cat

k

k ae

k ae t

cat

Figure C.1: The five possible paths through the lattice for the entry “cat” using a 1-2

model. A point in the lattice is reached by any sequence of graphones which generate

exactly the letters and phones specified by that lattice position.

The above equation (C.41) allows replacement of the summation over seg-

mentation in the denominator of the reestimation formula. In the case of the

numerator, only instances of the graphone Gm are counted. To limit the summa-

tion to only this graphone, an indicator variable δx,y,m is introduced which is only

non-zero if the letters and phones immediately preceding position (x, y) match

graphone Gm:

δx,y,m =

{
1 if ` (Gm) = (Xn)xx−q+1 and ρ (Gm) = (Y n) yy−r+1

0 otherwise
(C.42)

where graphone Gm has q letters and r phones.

Using the indicator variable and stopping the α term early to allow for an

explicit P (t)(Gm) term, the replacement needed for the numerator is:

|Sn|∑
s=1

C(Gm|Sns)
|Sns|∏
g=1

P (GSnsg |θ(t)) =

|Xn|∑
x=1

|Y n|∑
y=1

αn(x−q, y−r)P (t)(Gm)βn(x, y)δx,y,m .

(C.43)

Thus, the final reestimation formula is:

245

APPENDIX C. JOINT MULTIGRAM DERIVATION

P (t+1)(Gm) =

∑N
n=1

1

β
(t)
n (0,0)

∑|Xn|
x=1

∑|Y n|
y=1 α

(t)
n (x− q, y − r)P (t)(Gm)β

(t)
n (x, y)δx,y,m∑N

n=1
1

β
(t)
n (0,0)

∑|Xn|
x=1

∑|Y n|
y=1 α

(t)
n (x, y)β

(t)
n (x, y)

.

(C.44)

246

Appendix D

Mathematical Details

D.1 Cumulative Distribution Error Bars

To compare cumulative distributions, it is useful to have error bars to indicate

the uncertainty about each distribution. In this section, I describe the likelihood-

based method I used to determine error bars for cumulative distributions.

For a cumulative distribution F , let Fx be the true probability at coordinate

x with a random draw xn satisfying xn ≤ Fx. The true distribution is not known,

but we have observed a set of samples taken from this distribution. At x, A

samples were above x and B were below x. The probability of this occurring is

Q(Fx) = P (A,B|Fx) ∝ (Fx)
B(1− Fx)A . (D.1)

To find error bars at x, we approximate lnQ, the log of the posterior distri-

bution over Fx, using Laplace’s method. The second order Taylor-expansion of

lnQ around a point F̂x is

lnQ(Fx) ' lnQ(F̂x)+ (D.2)

∂

∂Fx
lnQ(Fx)|Fx=F̂x

· (Fx − F̂x)+ (D.3)

∂2

∂F 2
x

lnQ(Fx)|Fx=F̂x
· (Fx − F̂x)2

2!
. (D.4)

247

APPENDIX D. MATHEMATICAL DETAILS

We choose F̂x to be at lnQ’s peak:

∂

∂Fx
lnQ(Fx)|Fx=F̂x

= 0. (D.5)

Substituting D.1 in:

∂

∂Fx

(
lnFB

x + ln(1− Fx)A
)∣∣
Fx=F̂x

= 0. (D.6)

Solving D.6 yields a point estimate for the cumulative distribution at x given

observations A and B:

F̂x =
B

A+B
. (D.7)

Given D.5, the Laplace approximation D.2 becomes:

lnQ(Fx) ' lnQ(F̂x) +
∂2

∂F 2
x

lnQ(Fx)|Fx=F̂x

(Fx − F̂x)2

2
. (D.8)

Q is better approximated in the logit basis [101] where:

ax = ln
Fx

1− Fx
(D.9)

Fx =
1

1 + e−ax
. (D.10)

In this basis, the log of our posterior distribution is:

lnQ(Fx) ∝
∂2

∂a2
x

lnQ

(
1

1 + e−ax

)∣∣∣∣
ax=âx

· (ax − âx)2

2
(D.11)

∝ ∂2

∂a2
x

ln

((
1

1 + e−ax

)B (
1

1 + eax

)A)∣∣∣∣∣
ax=âx

· (ax − âx)2

2
(D.12)

∝ − (A+B) eax

(1 + eax)2

∣∣∣∣
ax=ln

(
F̂x

1−F̂x

) · (ax − âx)2

2
(D.13)

∝ − (A+B) eax

(1 + eax)2

∣∣∣∣
ax=ln(BA)

· (ax − âx)2

2
(D.14)

∝ −AB
A+B

· (ax − âx)2

2
. (D.15)

Q is thus an unnormalized Gaussian:

Q(Fx) ∝ e
−(ax−âx)2

2·σ2
a (D.16)

248

D.2 Maximization Proof

where

σ2
a =

A+B

AB
. (D.17)

Upper and lower z-sigma errors bars are at logit:

ln
B

A
± zσa . (D.18)

Or converting back from the logit basis:

1

1 + e(ln A
B
±zσa)

. (D.19)

D.2 Maximization Proof

Lemma D.2.1. To maximize
∑

i ci log pi with respect to the set of probabilities

{pi}, set p∗i = ci∑
i ci

.

Proof. The set {pi} is a probability distribution, so pi ≥ 0 and
∑

i pi = 1. Using

the sum to one constraint, maximization of Q =
∑

i ci log pi is done using a

Lagrange multiplier:

L(Q, λ) = Q+ λ

((∑
i

pi

)
− 1

)
(D.20)

5pi L(Q, λ) = 0. (D.21)

For the mth event:
∂

∂pm
L(Q, λ) =

cm
pm

+ λ = 0 (D.22)

pm =
cm
−λ

. (D.23)

Using (D.23) and the sum to one constraint:∑
i

ci
−λ

= 1. (D.24)

Solving for λ in (D.23) and plugging into (D.24) yields:

p∗m =
cm∑
i ci

. (D.25)

249

APPENDIX D. MATHEMATICAL DETAILS

250

Appendix E

Corpora Details

I used a variety of text and acoustic data sets during this thesis. Here I provide

a brief description of the corpora and test sets I used.

E.1 English Gigaword Text Corpus

The English Gigaword corpus [63] consists of articles from the New York Times,

Xinhua News Agency, Associated Press, and Agence France Press newswire ser-

vices. The articles are from 1994 to 2002. After processing the original files in

the corpus, I obtained a training set of 778M words. This corpus was used to

train the language model in chapter 3.

E.2 CSR-III Text Corpus

The CSR-III text corpus [64] consists of articles from the Associated Press, San

Jose Mercury, and the Wall Street Journal. The articles are from 1987 to 1991.

After processing the original files in the corpus, I obtained a training set of 222M

words. This corpus was used to train the language models used in chapter 2, 4,

5, and 6.

The corpus has a “setaside” directory containing 15M words of text from the

251

APPENDIX E. CORPORA DETAILS

same newswire sources. This text was not used during language model training.

I drew target sentences from the set-aside sentences in the user studies reported

in chapter 2, 4, and 5.

E.3 TIMIT Corpus

The TIMIT corpus [58] is a collection of US-English audio recording. The cor-

pus has a total of 6300 utterances from 630 speakers (approximately 12 hours

of audio). Unlike most other acoustic training corpora, the TIMIT corpus has

time-aligned phonetic transcriptions. I used these transcriptions to initialize the

monophone models in my HTK training recipe [147]. This recipe was used during

the training of the HTK acoustic models in chapter 2 and 6.

E.4 WSJ0 and WSJ1 Corpora

The WSJ0 and WSJ1 corpora [5; 57; 118] contain US-English recording of sen-

tences primarily from the Wall Street Journal (WSJ). This is the largest publicly

available data for training acoustic models on dictation-style audio. The corpus

contains recording from a Sennheiser microphone and from a secondary micro-

phone. In this thesis, I only used the Sennheiser recordings.

I used two training subsets of the WSJ corpora in this thesis:

• SI-284 – This training set combines the WSJ0 SI-84 training set (84 speak-

ers with about 100 utterances per speaker) and the WSJ1 SI-200 training

set (200 speakers with about 100 utterances per speaker). This training set

has about 66 hours of audio from the “short-term” speakers. I used this set

to train the acoustic model in chapter 3.

• wsj all – In experiments with my training recipe [147], I found that us-

ing training data from all speakers (short-term, long-term, and journalists)

provided the best accuracy. This training set contained 211 hours of audio

data. I used this set to train the acoustic models in chapter 4, 5, and 6.

252

E.4 WSJ0 and WSJ1 Corpora

I used a variety of test sets from the WSJ corpora. I list test sets by the corpus

and subdirectory in which they are found. Where applicable, I list alternative

names used to refer to a test set (in this thesis and elsewhere).

• WSJ1 si dt s2 / Dev CSR Spoke 2 – Read sentences from the San Jose

Mercury newspaper and utterances in the ATIS (Air Travel Information

Service) domain. In this thesis, I used only the San Jose Mercury portion

of the test set. This resulted in a test set of 207 sentences from 10 speakers.

• WSJ1 si dt 20 / Dev CSR Hub 1 – Read WSJ sentences that have a

vocabulary size of 64K. I removed 22 sentences that had verbalized punc-

tuation. This yielded 491 sentences from 10 speakers.

• WSJ1 si dt 05 / Dev CSR Hub 2 – Read WSJ sentences that have a

vocabulary size of 5K. This set contained 513 sentences from 10 speakers.

• WSJ1 si et s2 / Nov’93 CSR Spoke 2 – Read sentences from the

San Jose Mercury newspaper. This set contained 214 sentences from 10

speakers.

• WSJ1 si et h1 / Nov’93 CSR Hub 1 – Read WSJ sentences that have

a vocabulary size of 64K. This set contained 213 sentences from 10 speakers.

• WSJ1 si et h2 / Nov’93 CSR Hub 2 – Read WSJ sentences that have

a vocabulary size of 5K. This set contained 215 sentences from 10 speakers.

• WSJ0 si dt 20 – Read WSJ sentences that have a vocabulary size of 64K.

This set contained 403 sentences from 10 speakers.

• WSJ0 si dt 05 – Read WSJ sentences that have a vocabulary size of 5K.

This set contained 410 sentences from 10 speakers.

• WSJ0 si et 05 / Nov’92 – Read WSJ sentences that have a vocabulary

size of 5K. This set contained 330 sentences from 8 speakers.

• WSJ0 si dt jr – Spontaneously dictated sentences recorded by journalists.

This set contained 320 sentences from 4 speakers.

253

APPENDIX E. CORPORA DETAILS

E.5 WSJCAM0 Corpus

The WSJCAM0 corpus [124; 125] contains UK-English recording of primarily

Wall Street Journal sentences. The corpus contains about 16 hours of acoustic

training data. I used this corpus to train the UK-English acoustic models used

in chapter 2, 4 and 5. In chapter 2, I used the si dt 5b test set from this corpus.

This test set consists of read WSJ sentences using a 5K vocabulary (374 sentences

from 20 speakers).

254

References

[1] Dogpile SearchSpy. http://www.dogpile.com/dogpile/ws/searchspy/

rfcid=4101/rfcp=InternalNavigation/_iceUrlFlag=11?_IceUrl=

true. Accessed December 8, 2008. 162, 192, 199

[2] GStreamer: Open source multimedia framework. http://gstreamer.

freedesktop.org/. Accessed December 8, 2008. 125

[3] Xentec NV, home of Vox Studio. http://www.xentec.be/index.htm. Ac-

cessed June 18th, 2009. 48

[4] Yahoo! developer network home. http://developer.yahoo.com. Accessed

December 8, 2008. 190

[5] CSR-II (WSJ1) complete. http://www.ldc.upenn.edu/Catalog/

CatalogEntry.jsp?catalogId=LDC94S13A, 1994. Linguistic Data Consor-

tium, Philadelphia, PA, USA. Accessed June 5th, 2009. 13, 38, 46, 81, 124,

183, 252

[6] H. Abdi. Bonferroni and Šidák corrections for multiple comparisons. In

Encyclopedia of Measurement and Statistics. Sage, 2007. 21

[7] J. Accot and S. Zhai. More than dotting the i’s — foundations for crossing-

based interfaces. In CHI ’02: Proceedings of the SIGCHI Conference on

Human factors in Computing Systems, pages 73–80. ACM, 2002. 117

[8] M. J. Adamson and I. Damper. A recurrent network that learns to pro-

nounce English text. In Proceedings of the International Conference on

Spoken Language Processing, pages 1704–1707, October 1996. 205

255

http://www.dogpile.com/dogpile/ws/searchspy/rfcid=4101/rfcp=InternalNavigation/_iceUrlFlag=11?_IceUrl=true
http://www.dogpile.com/dogpile/ws/searchspy/rfcid=4101/rfcp=InternalNavigation/_iceUrlFlag=11?_IceUrl=true
http://www.dogpile.com/dogpile/ws/searchspy/rfcid=4101/rfcp=InternalNavigation/_iceUrlFlag=11?_IceUrl=true
http://gstreamer.freedesktop.org/
http://gstreamer.freedesktop.org/
http://www.xentec.be/index.htm
http://developer.yahoo.com
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC94S13A
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC94S13A

REFERENCES

[9] C. K. Akman. A computer aided transcription tool. Master’s thesis,

Boğazicçi University, Istanbul, Turkey, January 2007. 106

[10] F. Alleva, X. Huang, M.-Y. Hwang, and L. Jiang. Can continuous speech

recognizers handle isolated speech? In Proceedings of European Conference

on Speech Communication and Technology, pages 911–914, 1997. 55

[11] X. L. Aubert. A brief overview of decoding techniques for large vocabulary

continuous speech recognition. In ASR-2000, pages 91–97, September 2000.

225

[12] I. Bazzi and J. Glass. Learning units for domain-independent out-of-

vocabulary word modeling. In Proceedings of European Conference on

Speech Communication and Technology, pages 61–64, September 2001. 205

[13] L. Bell and J. Gustafson. Repetition and its phonetic realizations: Inves-

tigating a swedish database of spontaneous computer directed speech. In

Proceedings of ICPhS, pages 1221–1224, 1999. 35, 60

[14] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice

Hall, NJ, 1990. 79, 174

[15] R. Bencina and P. Burk. PortAudio - an API for portable real-time audio.

In Audio Anecdotes, pages 361–368, 2004. 12

[16] M. Bisani and H. Ney. Investigations on joint-multigram models for

grapheme-to-phoneme conversion. Proceedings of the International Con-

ference on Spoken Language Processing, pages 105–108, September 2002.

163, 173, 204

[17] M. Bisani and H. Ney. Bootstrap estimates for confidence intervals in ASR

performance evaluation. Proceedings of the IEEE Conference on Acoustics,

Speech, and Signal Processing (ICASSP), pages 409–411, May 2004. 46,

127, 131, 172, 192

[18] M. Bisani and H. Ney. Open vocabulary speech recognition with flat hybrid

models. Proceedings of European Conference on Speech Communication and

Technology, pages 725–728, September 2005. 172, 179, 181, 184, 205

256

REFERENCES

[19] M. Bisani and H. Ney. Joint-sequence models for grapheme-to-phoneme

conversion. Speech Communications, 50(5):434–451, 2008. 171, 178, 204,

205

[20] M. Bisani and H. Ney. Sequitur G2P – a trainable grapheme-to-phoneme

converter. http://www-i6.informatik.rwth-aachen.de/web/Software/

g2p.html, December 2008. Accessed June 5th, 2009. 178

[21] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag

New York, Inc., 2006. 237

[22] P. Boersma and D. Weenink. Praat: Doing phonetics by computer. http:

//www.praat.org/. Accessed December 8, 2008. 41

[23] T. Brants and A. Franz. Web 1T 5-gram version 1. http://www.ldc.

upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13, 2006.

Linguistic Data Consortium, Philadelphia, PA, USA. Accessed June 5th,

2009. 191

[24] M. Burke, B. Amento, and P. Isenhour. Error correction of voice mail tran-

scripts in SCANMail. In CHI ’06: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, pages 339–348, 2006. 28, 32

[25] Carnegie Mellon Speech Group. The CMU pronouncing dictionary. http://

www.speech.cs.cmu.edu/cgi-bin/cmudict. Accessed January 6th, 2009.

12, 46, 161, 184

[26] Center for Lexical Information, Max Planck Institute for Psycholinguis-

tics. CELEX lexical database of English (version 2.5). http://www.ldc.

upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC96L14. Accessed

April 21st, 2009. 204

[27] L. L. Chase. Error-responsive feedback mechanisms for speech recognizers.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1997. 10

[28] S. F. Chen. Conditional and joint models for grapheme-to-phoneme conver-

sion. Proceedings of European Conference on Speech Communication and

Technology, pages 2033–2036, September 2003. 172, 175, 178, 204

257

http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
http://www.praat.org/
http://www.praat.org/
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC96L14
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC96L14

REFERENCES

[29] S. F. Chen and J. Goodman. An empirical study of smoothing techniques

for language modeling. In Proceedings of the 34th annual meeting on As-

sociation for Computational Linguistics, pages 310–318, Morristown, NJ,

USA, 1996. Association for Computational Linguistics. 224

[30] S. F. Chen and J. T. Goodman. An empirical study of smoothing techniques

for language modeling. Technical report, Computer Science Group, Harvard

University, 1998. 174

[31] S. Choularton. Investigating the acoustic sources of speech recognition er-

rors. http://www.ics.mq.edu/au/~stephenc/inter2005.pdf. Accessed

2005. 59

[32] J. Cleary and I. Witten. Data compression using adaptive coding and partial

string matching. IEEE Transactions on Communications, 32(4):396–402,

April 1984. 78

[33] J. Cohen. Embedded speech recognition applications in mobile phones: sta-

tus, trends and challenges. Proceedings of the IEEE Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), pages 5352–5355, 2008. 110

[34] R. A. Cole. Survey of the state of the art in human language technology.

http://cslu.cse.ogi.edu/HLTsurvey/, 1996. Accessed April 26th, 2009.

215

[35] C. Collins, S. Carpendale, and G. Penn. Visualization of uncertainty in

lattices to support decision-making. In Proceedings of Eurographics/IEEE

VGTC Symposium on Visualization, pages 51–58, Norrköping, Sweden,

2007. 33

[36] A. Cox and A. Walton. Evaluating the viability of speech recognition for

mobile text entry. In Proceedings of HCI 2004: Design for Life, pages

25–28, 2004. 156

[37] A. Crossan, R. Murray-Smith, S. Brewster, J. Kelly, and B. Musizza. Gait

phase effects in mobile interaction. In CHI ’05: Extended abstracts on

Human Factors in Computing Systems, pages 1312–1315. ACM, 2005. 122

258

http://www.ics.mq.edu/au/~stephenc/inter2005.pdf
http://cslu.cse.ogi.edu/HLTsurvey/

REFERENCES

[38] W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den Bosch. TiMBL:

Tilburg memory-based learner. http://ilk.uvt.nl/timbl/. Accessed De-

cember 8, 2008. 206

[39] R. I. Damper and J. F. G. Eastmond. Pronouncing text by analogy. In

Proceedings of the 16th Conference on Computational Linguistics, pages

268–273, Morristown, NJ, USA, 1996. Association for Computational Lin-

guistics. 205

[40] J. J. Darragh, I. H. Witten, and M. L. James. The reactive keyboard: A

predictive typing aid. Computer, 23(11):41–49, 1990. 123

[41] S. B. Davis and P. Mermelstein. Comparison of parametric representations

for monosyllable word recognition in continuously spoken sentences. IEEE

Transactions on Speech and Audio Processing, 28(4):357–366, 1980. 216

[42] B. Decadt, J. Duchateau, W. Daelemans, and P. Wambacq. Transcription

of out-of-vocabulary words in large vocabulary speech recognition based on

phoneme-to-grapheme conversion. Proceedings of the IEEE Conference on

Acoustics, Speech, and Signal Processing (ICASSP), pages 861–864, May

2002. 205

[43] S. Deligne and F. Bimbot. Inference of variable-length linguistic and acous-

tic units by multigrams. Speech Communication, 23(3):223–241, 1997. 163,

203, 237

[44] S. Deligne, F. Yvon, and F. Bimbot. Variable-length sequence matching

for phonetic transcription using joint multigrams. Proceedings of European

Conference on Speech Communication and Technology, pages 2243–2246,

1995. 163, 203, 237

[45] E. Devine, S. Gaehde, and A. Curtis. Comparative evaluation of three con-

tinuous speech recognition software packages in the generation of medical

reports. Journal of the American Medical Informatics Association, 7:462–

468, 2000. 8, 13

259

http://ilk.uvt.nl/timbl/

REFERENCES

[46] H. Elovitz, R. Johnson, A. McHugh, and J. Shore. Letter-to-sound rules

for automatic translation of English text to phonetics. IEEE Transactions

on Acoustics, Speech and Signal Processing, 24(6):446–459, 1976. 205

[47] T. Endo, N. Ward, and M. Terada. Can confidence scores help users post-

editing speech recognizer output? In International Conference on Spoken

Language Processing, pages 1469–1472, Denver, CO, 2002. 8, 33

[48] T. Fabian, R. Lieb, G. Ruske, and M. Thomae. Impact of word graph den-

sity on the quality of posterior probability based confidence measures. In

Proceedings of European Conference on Speech Communication and Tech-

nology, pages 917–920, September 2003. 30

[49] J. Feng and A. Sears. Using confidence scores to improve hands-free speech

based navigation in continuous dictation systems. ACM Transactions on

Computer Human Interaction, 11(4):329–356, 2004. 33

[50] M. Finke and T. Zeppenfeld. LVCSR switchboard April 1996 evaluation

report. In Proceedings of the LVCSR Hub 5 Workshop, April 1996. 11

[51] A. Fischer, K. Price, and A. Sears. Speech-based text entry for mobile

handheld devices: An analysis of efficacy and error correction techniques

for server-based solutions. International Journal of Human-Computer In-

teraction, 19(3):279–304, 2006. 155

[52] P. Fitts. The information capacity of the human motor system in con-

trolling the amplitude of movement. Journal of Experimental Psychology,

47(6):381–391, 1954. 11, 117

[53] A. Franz and B. Milch. Searching the web by voice. In Proceedings of the

Conference on Computational Linguistics, pages 1213–1217, 2002. 195, 206

[54] M. J. F. Gales. The generation and use of regression class trees for MLLR

adaptation. Technical Report CUED/F-INFENG/TR263, Cambridge Uni-

versity, 1996. 221

[55] L. Galescu. Recognition of out-of-vocabulary words with sub-lexical lan-

guage models. In Proceedings of European Conference on Speech Commu-

nication and Technology, pages 249–252, September 2003. 205

260

REFERENCES

[56] L. Galescu and J. Allen. Bi-directional conversion between graphemes and

phonemes using a joint n-gram model. Proceedings of the 4th ISCA Tutorial

and Research Workshop on Speech Synthesis, 2001. 171, 178, 203

[57] J. Garofalo, D. Graff, D. Paul, and D. Pallett. CSR-I (WSJ0)

complete. http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?

catalogId=LDC93S6A, 1994. Linguistic Data Consortium, Philadelphia,

PA, USA. Accessed June 5th, 2009. 46, 81, 124, 183, 252

[58] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pal-

lett, N. L. Dahlgren, and V. Zue. TIMIT acoustic-phonetic continu-

ous speech corpus. http://www.ldc.upenn.edu/Catalog/CatalogEntry.

jsp?catalogId=LDC93S1, 1993. Linguistic Data Consortium, Philadelphia,

PA, USA. Accessed June 5th, 2009. 46, 183, 252

[59] J. Gauvain and C. Lee. Maximum a posteriori estimation for multivariate

gaussian mixture observations of Markov chains. IEEE Transactions on

Speech and Audio Processing, 2(2):291–298, April 1994. 13, 81, 124, 222

[60] C. Gollan, M. Bisani, S. Kanthak, R. Schlüter, and H. Ney. Cross domain

automatic transcription on the TC-STAR EPPS corpus. Proceedings of the

IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP),

pages 825–828, March 2005. 206

[61] I. J. Good. The population frequencies of species and the estimation of

population parameters. Biometrika, 40(3 and 4):237–264, 1953. 174

[62] J. Goodman, G. Venolia, K. Steury, and C. Parker. Language modeling for

soft keyboards. In IUI ’02: Proceedings of the 7th International Conference

on Intelligent User Interfaces, pages 194–195. ACM, 2002. 123

[63] D. Graff. English gigaword corpus. http://www.ldc.upenn.edu/Catalog/

CatalogEntry.jsp?catalogId=LDC2003T05, 2003. Linguistic Data Con-

sortium, Philadelphia, PA, USA. Accessed June 5th, 2009. 251

[64] D. Graff, R. Rosenfeld, and D. Pau. CSR-III text. http://www.ldc.

upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95T6, 1995. Lin-

261

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S6A
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S6A
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T05
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T05
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95T6
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95T6

REFERENCES

guistic Data Consortium, Philadelphia, PA, USA. Accessed June 5th, 2009.

12, 47, 118, 125, 251

[65] D. Hakkani-Tür, F. Béchet, G. Riccardi, and G. Tur. Beyond ASR 1-best:

Using word confusion networks in spoken language understanding. Journal

of Computer Speech and Language, 20(4):495–514, 2006. 30, 114

[66] C. A. Halverson, D. B. Horn, C.-M. Karat, and J. Karat. The beauty of er-

rors: Patterns of error correction in desktop speech systems. In Proceedings

of INTERACT, pages 133–140, 1999. 35, 61, 68

[67] I. L. Hetherington. PocketSUMMIT: small footprint continuous speech

recognition. In Proceedings of the International Conference on Spoken Lan-

guage Processing, pages 1465–1468, August 2007. 110

[68] J. Hirschberg, D. Litman, and M. Swerts. Prosodic cues to recognition er-

rors. In Proceedings of the Automatic Speech Recognition and Understanding

Workshop (ASRU’99), pages 349–352, 1999. 59

[69] J. Hirschberg, D. Litman, and M. Swerts. Generalizing prosodic prediction

of speech recognition errors. In In Proceedings of the 6th International

Conference of Spoken Language Processing, pages 254–257, 2000. 59

[70] J. Hirschberg, D. Litman, and M. Swerts. Prosodic and other cues to speech

recognition failures. Speech Communication, 43(1-2):155–175, June 2004.

59

[71] J. Hirschberg, D. Litman, and M. Swerts. Characterizing and predicting cor-

rections in spoken dialogue systems. Computational Linguistics, 32(3):417–

438, 2006. 59

[72] P. G. Howard. The design and analysis of efficient lossless data compression

systems. PhD thesis, Brown University, 1993. 79

[73] X. D. Huang and M. A. Jack. Semi-continuous hidden markov models for

speech signals. Computer Speech and Language, 8(3):239–252, 1989. 221

262

REFERENCES

[74] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar, and

A. I. Rudnicky. PocketSphinx: A free, real-time continuous speech recogni-

tion system for hand-held devices. In Proceedings of the IEEE Conference

on Acoustics, Speech, and Signal Processing (ICASSP), pages 185–188, May

2006. 81, 110, 124, 126, 199

[75] D. Huggins-Daines and A. I. Rudnicky. Interactive ASR error correction for

touchscreen devices. In Proceedings of ACL-8: HLT Demo Session, pages

17–19. ACL, 2008. 106, 155

[76] F. Jelinek. Statistical Methods for Speech Recognition. The MIT Press,

January 1998. 215

[77] H. Jiang. Confidence measures for speech recognition: A survey. Speech

Communication, 45(4):455–470, 2005. 30

[78] D. Jurafsky and J. H. Martin. Speech and Language Processing. Prentice

Hall, second edition, May 2008. 215

[79] M. Kamvar and S. Baluja. Deciphering trends in mobile search. IEEE

Computer, 40(8):58–62, 2007. 5, 191, 202, 212

[80] C.-M. Karat, C. Halverson, D. Horn, and J. Karat. Patterns of entry and

correction in large vocabulary continuous speech recognition systems. In

CHI ’99: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, pages 568–575. ACM, 1999. 8, 35, 61, 62, 65, 68, 107,

109, 112

[81] J. Karat, D. Horn, C. Halverson, and C. Karat. Overcoming unusability:

Developing efficient strategies in speech recognition systems. In CHI ’00:

Extended abstracts on Human Factors in Computing Systems, pages 141–

142. ACM, 2000. 13

[82] A. K. Karlson, B. B. Bederson, and J. L. Contreras-Vidal. Understanding

one-handed use of mobile devices. In J. Lumsden, editor, Handbook of

Research on User Interface Design and Evaluation for Mobile Technology,

pages 86–100. Idea Group, 2008. 113

263

REFERENCES

[83] E. Karpov, I. Kiss, J. Leppnen, J. Olsen, D. Oria, S. Sivadas, and J. Tian.

Short message dictation on symbian series 60 mobile phones. In Workshop

on Speech in Mobile and Pervasive Environments, pages 126–127, 2006. 155

[84] T. Kemp and T. Schaaf. Estimating confidence using word lattices. In

Proceedings of European Conference on Speech Communication and Tech-

nology, pages 827–830, 1997. 11

[85] R. Kneser and H. Ney. Improved backing-off for m-gram language modeling.

In Proceedings of the IEEE Conference on Acoustics, Speech, and Signal

Processing (ICASSP), pages 181–184, 1995. 174

[86] H. H. Koester. Usage, performance, and satisfaction outcomes for expe-

rienced users of automatic speech recognition. Journal of Rehabilitation

Research and Development, 41(5):739–755, September 2004. 8, 13, 35, 62,

65, 107

[87] T. W. Kohler, C. Fugen, S. Stker, and A. Waibel. Rapid porting of ASR-

systems to mobile devices. In Proceedings of the International Conference

on Spoken Language Processing, pages 233–236, September 2005. 110

[88] P. O. Kristensson and S. Zhai. Relaxing stylus typing precision by geo-

metric pattern matching. In IUI ’05: Proceedings of the 10th International

Conference on Intelligent User Interfaces, pages 151–158. ACM, 2005. 123

[89] P. O. Kristensson and S. Zhai. Improving word-recognizers using an in-

teractive lexicon with active and passive words. In IUI ’08: Proceedings

of the 13th International Conference on Intelligent User Interfaces, pages

353–356, New York, NY, USA, 2008. ACM. 112

[90] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of

Mathematical Statistics, 22(1):79–86, 1951. 239

[91] K. Kurihara, M. Goto, J. Ogata, and T. Igarashi. Speech pen: Predic-

tive handwriting based on ambient multimodal recognition. In CHI ’06:

Proceedings of the SIGCHI Conference on Human factors in Computing

Systems, pages 851–860. ACM, 2006. 106, 117, 154

264

REFERENCES

[92] J. Lai and J. Vergo. MedSpeak: Report creation with continuous speech

recognition. In CHI ’97: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 431–438. ACM, 1997. 8

[93] K. Larson and D. Mowatt. Speech error correction: The story of the al-

ternates list. International Journal of Speech Technology, pages 183–194,

2003. 65, 108, 109

[94] LDC. CSR-III text corpus. http://www.ldc.upenn.edu/Catalog/

CatalogEntry.jsp?catalogId=LDC95T6. Accessed December 8, 2008. 129

[95] C. J. Leggetter and P. C. Woodland. Flexible speaker adaptation using

maximum likelihood linear regression. In Proceedings of the ARPA Spoken

Language Technology Workshop, pages 110–115, 1995. 221

[96] C. J. Leggetter and P. C. Woodland. Maximum likelihood linear regres-

sion for speaker adaptation of continuous density hidden Markov models.

Computer Speech and Language, pages 171–185, 1995. 12, 57, 81, 124, 221

[97] G.-A. Levow. Characterizing and recognizing spoken corrections in human-

computer dialogue. In COLING-ACL, pages 736–742, 1998. 35, 58

[98] X. H. Li Jiang, Hsiao-Wuen Hon. Improvements on a trainable letter-to-

sound converter. In Proceedings of European Conference on Speech Com-

munication and Technology, pages 605–608, September 1997. 205

[99] F.-H. Liu, R. M. Stern, X. Huang, and A. Acero. Efficient cepstral nor-

malization for robust speech recognition. In Proceedings of ARPA Human

Language Technology Workshop, pages 69–74, March 1993. 82, 125, 217

[100] J. Lööf, C. Gollan, S. Hahn, G. Heigold, B. Hoffmeister, C. Plahl, D. Ry-

bach, R. Schlüter, and H. Ney. The RWTH 2007 TC-STAR evaluation sys-

tem for european english and spanish. In Proceedings of the International

Conference on Spoken Language Processing, pages 2145–2148, August 2007.

206

[101] D. J. C. MacKay. Choice of basis for Laplace approximation. Machine

Learning, 33(1):77–86, 1998. 248

265

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95T6
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95T6

REFERENCES

[102] I. S. MacKenzie and R. W. Soukoreff. Text entry for mobile computing:

Models and methods, theory and practice. Human-Computer Interaction,

17:147–198, 2002. 109

[103] I. S. MacKenzie and S. X. Zhang. The design and evaluation of a high-

performance soft keyboard. In CHI ’99: Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, pages 25–31, New York,

NY, USA, 1999. ACM. 157

[104] L. Mangu, E. Brill, and A. Stolcke. Finding consensus in speech recogni-

tion: Word error minimization and other applications of confusion networks.

Computer Speech and Language, 14(4):373–400, 2000. 9, 105, 161, 181, 226

[105] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki.

The DET curve in assessment of detection task performance. In Proceedings

of European Conference on Speech Communication and Technology, pages

1895–1898, Rhodes, Greece, 1997. 30

[106] Microsoft. Speech software development kit 5.1. http:

//www.microsoft.com/downloads/details.aspx?FamilyID=

5e86ec97-40a7-453f-b0ee-6583171b4530. Accessed January 6th,

2009. 46

[107] A. Moffat. Implementing the PPM data compression scheme. IEEE Trans-

actions on Communications, 38(11):1917–1921, November 1990. 79

[108] R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies

incremental, sparse and other variants. In M. I. Jordan, editor, Learning in

Graphical Models, pages 355–368. Kluwer Academic Publishers, 1998. 239,

240

[109] H. Ney, U. Essen, and R. Kneser. On structuring probabilistic dependencies

in stochastic language modelling. Computer Speech and Language, 8:1–38,

1994. 174

[110] M. Novak. Towards large vocabulary ASR on embedded platforms. In Pro-

ceedings of the International Conference on Spoken Language Processing,

pages 2309–2312, October 2004. 110

266

http://www.microsoft.com/downloads/details.aspx?FamilyID=5e86ec97-40a7-453f-b0ee-6583171b4530
http://www.microsoft.com/downloads/details.aspx?FamilyID=5e86ec97-40a7-453f-b0ee-6583171b4530
http://www.microsoft.com/downloads/details.aspx?FamilyID=5e86ec97-40a7-453f-b0ee-6583171b4530

REFERENCES

[111] Nuance. Dragon NaturallySpeaking speech recognition software. http:

//www.nuance.com/naturallyspeaking/. Accessed April 27th, 2009. 46

[112] J. Ogata and M. Goto. Speech repair: Quick error correction just by us-

ing selection operation for speech input interfaces. In Proceedings of the

International Conference on Spoken Language Processing, pages 133–136,

September 2005. 154

[113] J. Olsen, Y. Cao, G. Ding, and X. Yang. A decoder for large vocabulary

continuous short message dictation on embedded devices. Proceedings of the

IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP),

pages 4337–4340, March 2008. 125, 154

[114] A. Oulasvirta, S. Tamminen, V. Roto, and J. Kuorelahti. Interaction in

4-second bursts: the fragmented nature of attentional resources in mobile

HCI. In CHI ’05: Proceedings of the SIGCHI Conference on Human factors

in Computing Systems, pages 919–928, New York, NY, USA, 2005. ACM

Press. 113, 140

[115] S. Oviatt. Modeling hyperarticulate speech during human-computer er-

ror resolution. In Proceedings of the International Conference on Spoken

Language Processing, pages 797–800, 1996. 35, 58

[116] S. Oviatt, P. Cohen, L. Wu, J. Vergo, L. Duncan, B. Suhm, J. Bers, T. Holz-

man, T. Winograd, J. Landay, J. Larson, and D. Ferro. Designing the

user interface for multimodal speech and gesture applications: State-of-the-

art systems and future research directions. Human-Computer Interaction,

15:253–322, 2000. 112

[117] S. Oviatt, M. MacEachern, and G.-A. Levow. Predicting hyperarticulate

speech during human-computer error resolution. Speech Communication,

24(2):87–110, 1998. 36, 59

[118] D. B. Paul and J. M. Baker. The design for the Wall Street Journal-based

CSR corpus. In HLT ’91: Proceedings of the Workshop on Speech and Nat-

ural Language, pages 357–362. Association for Computational Linguistics,

1992. 13, 129, 252

267

http://www.nuance.com/naturallyspeaking/
http://www.nuance.com/naturallyspeaking/

REFERENCES

[119] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes

in C. Cambridge University Press, Cambridge, UK, 1992. 178, 204

[120] J. Price, M. Lin, J. Feng, R. Goldman, A. Sears, and A. Jacko. Motion does

matter: An examination of speech-based text entry on the move. Universal

Access in the Information Society, 4(3):246–257, 2006. 129, 156

[121] L. R. Rabiner. A tutorial on hidden markov models and selected applica-

tions in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

218

[122] B. Reeves and C. Nass. The media equation: how people treat computers,

television, and new media like real people and places. Cambridge University

Press, New York, NY, USA, 1996. 29, 32

[123] T. Robinson. BEEP dictionary. http://svr-www.eng.cam.ac.uk/comp.

speech/Section1/Lexical/beep.html, August 1996. Accessed June 5th,

2009. 12

[124] T. Robinson, J. Fransen, D. Pye, J. Foote, and S. Renals. WSJCAM0:

A British English speech corpus for large vocabulary continuous speech

recognition. In Proceedings of the IEEE Conference on Acoustics, Speech,

and Signal Processing (ICASSP), pages 81–84, Detroit, MI, 1995. 12, 254

[125] T. Robinson, J. Fransen, D. Pye, J. Foote, S. Renals, P. Woodland, and

S. Young. WSJCAM0 cambridge read news. http://www.ldc.upenn.edu/

Catalog/CatalogEntry.jsp?catalogId=LDC95S24, 1995. Linguistic Data

Consortium, Philadelphia, PA, USA. Accessed June 5th, 2009. 124, 254

[126] C. Schmandt. The intelligent ear: A graphical interface to digital audio.

In Proceedings of the International Conference on Cybernetics and Society,

pages 393–397, Atlanta, GA, 1981. 31

[127] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,

6:461–464, 1978. 176

[128] K. Seymore, S. Chen, S. Doh, M. Eskenazi, E. Gouvea, B. Raj, M. Ravis-

hankar, R. Rosenfeld, M. Siegler, R. Stern, and E. Thayer. CMU Sphinx-3

268

http://svr-www.eng.cam.ac.uk/comp.speech/Section1/Lexical/beep.html
http://svr-www.eng.cam.ac.uk/comp.speech/Section1/Lexical/beep.html
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95S24
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95S24

REFERENCES

English broadcast news transcription system. In Proceedings of the 1998

DARPA Speech Recognition Workshop, pages 55–59, 1998. 12

[129] J. Sherwani, D. Yu, T. Paek, M. Czerwinski, Y. C. Ju, and A. Acero.

Voicepedia: Towards speech-based access to unstructured information. In

Proceedings of European Conference on Speech Communication and Tech-

nology, pages 146–149, 2007. 195, 207

[130] B. Shneiderman. The limits of speech recognition. Communications of the

ACM, 43(9):63–65, 2000. 110

[131] E. Shriberg, E. Wade, and P. Price. Human-machine problem solving using

spoken language systems (SLS): Factors affecting performance and user

satisfaction. In Proceedings of the DARPA Speech and Natural Language

Workshop, pages 49–54, 1992. 35, 36, 40, 59, 63

[132] V. Siivola, T. Hirsimki, M. Creutz, and M. Kurimo. Unlimited vocabulary

speech recognition based on morphs discovered in an unsupervised man-

ner. In Proceedings of European Conference on Speech Communication and

Technology, pages 2293–2296, 2006. 206

[133] H. Soltau and A. Waibel. On the influence of hyperarticulated speech on

recognition performance. In Proceedings of the International Conference on

Spoken Language Processing, pages 225–228, 1998. 35, 60, 63

[134] H. Soltau and A. Waibel. Phone dependent modeling of hyperarticulated

effects. In Proceedings of the International Conference on Spoken Language

Processing, pages 105–108, October 2000. 60, 63

[135] H. Soltau and A. Waibel. Specialized acoustic models for hyperarticulated

speech. In Proceedings of the IEEE Conference on Acoustics, Speech, and

Signal Processing (ICASSP), pages 1779–1782, June 2000. 60, 63

[136] A. J. Stent, M. K. Huffman, and S. E. Brennan. Adapting speaking af-

ter evidence of misrecognition: Local and global hyperarticulation. Speech

Communications, 50(3):163–178, 2008. 35, 60, 63

269

REFERENCES

[137] A. Stolcke. Entropy-based pruning of backoff language models. In Proceed-

ings of DARPA Broadcast News Transcription and Understanding Work-

shop, pages 270–274, 1998. 47, 82, 125, 223

[138] A. Stolcke. SRILM – an extensible language modeling toolkit. In Interna-

tional Conference on Spoken Language Processing, pages 901–904, Denver,

CO, 2002. 12, 47, 128, 170, 183, 193

[139] B. Suhm, B. Myers, and A. Waibel. Multimodal error correction for

speech user interfaces. ACM Transactions on Computer-Human Interac-

tion, 8(1):60–98, 2001. 8, 15, 32, 107, 112, 155

[140] B. Suhm and A. Waibel. Exploiting repair context in interactive error recov-

ery. In Proceedings of the European Conference on Speech Communication

and Technology, pages 1659–1662, 1997. 55

[141] Z.-H. Tan and B. Lindberg. Automatic Speech Recognition on Mobile De-

vices and over Communication Networks. Springer Publishing Company,

2008. 153

[142] P. Taylor. Hidden Markov models for grapheme to phoneme conversion. In

Proceedings of the International Conference on Spoken Language Process-

ing, pages 1973–1976, September 2005. 205

[143] W. J. Teahan. Modelling English Text. PhD thesis, University of Waikato,

1997. 79

[144] O. Tuisku, P. Majaranta, P. Isokoski, and K.-J. Räihä. Now dasher! dash

away! Longitudinal study of fast text entry by eye gaze. In ETRA ’08:

Proceedings of the 2008 symposium on Eye tracking research & applications,

pages 19–26, 2008. 107

[145] S. Vermuri, P. DeCamp, W. Bender, and C. Schmandt. Improving speech

playback using time-compression and speech recognition. In CHI ’04: Pro-

ceedings of the SIGCHI Conference on Human factors in Computing Sys-

tems, pages 295–302. ACM, 2004. 32

270

REFERENCES

[146] K. Vertanen. Efficient computer interfaces using continuous gestures, lan-

guage models, and speech. Technical Report UCAM-CL-TR-627, Computer

Laboratory, University of Cambridge, 2005. 67, 74, 75, 121

[147] K. Vertanen. Baseline WSJ acoustic models for HTK and Sphinx: Training

recipes and recognition experiments. Technical report, Cavendish Labora-

tory, University of Cambridge, 2006. http://www.inference.phy.cam.

ac.uk/is/papers/baseline_wsj_recipes.pdf. 12, 46, 47, 81, 124, 183,

252

[148] K. Vertanen. Speech and speech recognition during dictation corrections.

In Proceedings of the International Conference on Spoken Language Pro-

cessing, September 2006. 13, 36

[149] K. Vertanen. Combining open vocabulary recognition and word confusion

networks. In Proceedings of the IEEE Conference on Acoustics, Speech, and

Signal Processing (ICASSP), pages 4325–4328, March 2008. 161

[150] K. Vertanen. Training, development and test set split of the CMU dic-

tionary. http://www.keithv.com/cmusplit/, April 2009. Accessed June

4th, 2009. 172

[151] K. Vertanen and P. O. Kristensson. On the benefits of confidence visu-

alization in speech recognition. In CHI ’08: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 1497–1500.

ACM, 2008. 9

[152] K. Vertanen and P. O. Kristensson. Parakeet: A continuous speech recogni-

tion system for mobile touch-screen devices. In IUI ’09: Proceedings of the

14th International Conference on Intelligent User Interfaces, pages 237–246.

ACM, 2009. 111, 196

[153] K. Vertanen and P. O. Kristensson. Parakeet: A demonstration of speech

recognition on a mobile touch-screen device. In IUI ’09: Proceedings of the

14th International Conference on Intelligent User Interfaces, pages 483–

484. ACM, 2009. 111

271

http://www.inference.phy.cam.ac.uk/is/papers/baseline_wsj_recipes.pdf
http://www.inference.phy.cam.ac.uk/is/papers/baseline_wsj_recipes.pdf
http://www.keithv.com/cmusplit/

REFERENCES

[154] K. Vertanen and P. O. Kristensson. Recognition and correction of voice web

search queries. In Proceedings of the International Conference on Spoken

Language Processing, pages 1863–1866, September 2009. 161

[155] E. Wade, E. Shriberg, and P. Price. User behaviors affecting speech recog-

nition. In Proceedings of the International Conference on Spoken Language

Processing, pages 995–998, 1992. 36, 60, 63

[156] D. Ward. Adaptive Computer Interfaces. PhD thesis, University of Cam-

bridge, 2001. 107

[157] D. J. Ward, A. F. Blackwell, and D. J. C. MacKay. Dasher - a data entry

interface using continuous gestures and language models. In UIST ’00:

Proceedings of the 13th Annual ACM Symposium on User Interface software

and technology, pages 129–137. ACM Press, 2000. 65, 66

[158] D. J. Ward and D. J. C. MacKay. Fast hands-free writing by gaze direction.

Nature, 418(6900):838, 2002. 66, 107

[159] F. Weng, A. Stolcke, and A. Sankar. Efficient lattice representation and

generation. In Proceedings of the International Conference on Spoken Lan-

guage Processing, pages 2531–2534, 1998. 74, 127, 128

[160] F. Wessel, R. Schltiter, K. Macherey, and H. Ney. Confidence measures

for large vocabulary continuous speech recognition. IEEE Transactions on

Speech and Audio Processing, 9:288–298, 2001. 30

[161] M. Wilson. MRC psycholinguistic database: Machine usable dictionary,

version 2.00. http://www.psy.uwa.edu.au/mrcdatabase/uwa_mrc.htm,

1987. Rutherford Appleton Laboratory, Oxfordshire, England. Accessed

June 5th, 2009. 41

[162] J. O. Wobbrock, D. H. Chau, and B. A. Myers. An alternative to push,

press, and tap-tap-tap: Gesturing on an isometric joystick for mobile phone

text entry. In CHI ’07: Proceedings of the SIGCHI Conference on Human

factors in Computing Systems, pages 667–676. ACM, 2007. 4, 149, 157, 212

272

http://www.psy.uwa.edu.au/mrcdatabase/uwa_mrc.htm

REFERENCES

[163] P. C. Woodland. Speaker adaptation for continuous density HMMs: A

review. In ITRW on Adaptation Methods for Speech Recognition, pages

11–19, August 2001. 222

[164] P. C. Woodland, C. J. Leggetter, J. J. Odell, V. Valtchev, and S. J. Young.

The 1994 HTK large vocabulary speech recognition system. In Acoustics,

Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Con-

ference on, volume 1, pages 73–76, May 1995. 228

[165] P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young. Large vocabulary

continuous speech recognition using HTK. Proceedings of the IEEE Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), 2:125–128,

April 1994. 47

[166] A. Yazgan and M. Saraclar. Hybrid language models for out of vocabu-

lary word detection in large vocabulary conversational speech recognition.

Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP), pages 745–748, May 2004. 205

[167] S. J. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw, X. Liu,

G. Moore, J. J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. C.

Woodland. HTK version 3.4. http://htk.eng.cam.ac.uk/ftp/software/

HTK-3.4.zip, March 2007. Accessed June 4th, 2009. 47, 183

[168] S. J. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw, X. Liu,

G. Moore, J. J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. C. Wood-

land. The HTK Book (for HTK Version 3.4). University of Cambridge,

March 2009. 47, 183

[169] S. J. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw, G. Moore,

J. J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. C. Woodland. The

HTK Book (for HTK Version 3.3). University of Cambridge, April 2005.

41, 46

[170] S. J. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw, G. Moore,

J. J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. C. Woodland. HTK

version 3.3. http://htk.eng.cam.ac.uk/ftp/software/HTK-3.3.zip,

September 2005. Accessed June 4th, 2009. 46

273

http://htk.eng.cam.ac.uk/ftp/software/HTK-3.4.zip
http://htk.eng.cam.ac.uk/ftp/software/HTK-3.4.zip
http://htk.eng.cam.ac.uk/ftp/software/HTK-3.3.zip

REFERENCES

[171] S. J. Young, J. J. Odell, and P. C. Woodland. Tree-based state tying for

high accuracy acoustic modelling. In HLT ’94: Proceedings of the workshop

on Human Language Technology, pages 307–312, Morristown, NJ, USA,

1994. Association for Computational Linguistics. 220

[172] S. J. Young, N. Russell, and J. Thornton. Token passing: A simple con-

ceptual model for connected speech recognition systems. Technical report,

Cambridge University Engineering Department, 1989. 170, 225

[173] S. Zhai, P. O. Kristensson, and B. A. Smith. In search of effective text

input interfaces for off the desktop computing. Interacting with Computers,

17(3):229–250, 2005. 109

274

	1 Introduction
	1.1 The Problem
	1.2 Important Themes
	1.3 Overview and Contributions

	2 Visualizing Recognition Confidence
	2.1 Overview
	2.2 Confidence Visualization
	2.3 Speech Recognition
	2.4 User Study
	2.5 Results and Discussion
	2.6 Limitations
	2.7 Related Work
	2.8 Conclusions

	3 Spoken Corrections
	3.1 Overview
	3.2 Data Collection
	3.3 Analyzing Speech During Corrections
	3.4 Recognition Experiments
	3.5 Improving Recognition of Short Corrections
	3.6 Related Work
	3.7 Conclusions

	4 Speech Dasher
	4.1 Overview
	4.2 Design Principles
	4.3 Interface Description
	4.4 Probability Model
	4.5 Speech Recognition
	4.6 User Study
	4.7 Discussion
	4.8 Related Work
	4.9 Conclusions

	5 Touch-Screen Mobile Correction
	5.1 Overview
	5.2 Design Principles
	5.3 Interface Description
	5.4 Predictive Software Keyboard
	5.5 Mobile Speech Recognizer
	5.6 User Study
	5.7 Discussion
	5.8 Related Work
	5.9 Conclusions

	6 Open Vocabulary Recognition for Web Search
	6.1 Overview
	6.2 The Large Vocabulary Problem
	6.3 Letter-to-Phone Conversion
	6.4 Letter-to-Phone Experiments
	6.5 Word + Graphone Language Models
	6.6 Word + Graphone Experiments
	6.7 Web Search Query Corpus
	6.8 Web Search Experiments
	6.9 User Study
	6.10 Related Work
	6.11 Conclusions

	7 Conclusions
	7.1 Final Thought

	A Speech Recognition Basics
	A.1 Statistical Formulation
	A.2 Acoustic Modeling
	A.3 Language Modeling
	A.4 Decoding
	A.5 Result Representations
	A.6 Performance Metrics

	B Corpus of Spoken Dictation and Corrections
	B.1 Detail of Tasks
	B.2 All Cumulative Distributions

	C Joint Multigram Derivation
	C.1 Latent Variable Formulation
	C.2 Expectation Maximization

	D Mathematical Details
	D.1 Cumulative Distribution Error Bars
	D.2 Maximization Proof

	E Corpora Details
	E.1 English Gigaword Text Corpus
	E.2 CSR-III Text Corpus
	E.3 TIMIT Corpus
	E.4 WSJ0 and WSJ1 Corpora
	E.5 WSJCAM0 Corpus

	References

