
Parakeet: A Continuous Speech Recognition System  
for Mobile Touch-Screen Devices 

Keith Vertanen and Per Ola Kristensson 
Cavendish Laboratory, University of Cambridge 

JJ Thomson Avenue, Cambridge, UK 
{kv277, pok21}@cam.ac.uk  

 
 

ABSTRACT 
We present Parakeet, a system for continuous speech 
recognition on mobile touch-screen devices. The design of 
Parakeet was guided by computational experiments and 
validated by a user study.  Participants had an average text 
entry rate of 18 words-per-minute (WPM) while seated 
indoors and 13 WPM while walking outdoors. In an expert 
pilot study, we found that speech recognition has the 
potential to be a highly competitive mobile text entry 
method, particularly in an actual mobile setting where users 
are walking around while entering text. 
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ACM Classification Keywords 
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INTRODUCTION 
The advantages of speech recognition as a mobile text entry 
method seem obvious and highly attractive. Speaking is a 
naturally acquired skill which does not demand much 
practice from users. Speech can also be very fast. Users can 
speak up to 200 WPM [22]. 

However, speech recognition remains to prove itself as a 
competitive mobile text entry method. At least in the past, 
speech recognition performance suffered from poor 
accuracy [12]. The privacy implications of using speech as 
the sole modality for text entry are also obvious. Further, it 
has been argued that using speech as a text entry method 
also carries cognitive costs that may limit speech 
recognition entry rates in practice [23].  

  

 
Figure 1. The Nokia N800 device and a Bluetooth headset. The 

Parakeet continuous speech recognition system is shown 
running on the device. 

From an engineering perspective, speech recognition 
demands a device with more memory and processing power 
than required by traditional mobile text entry methods, such 
as predictive text or character recognition.   

Despite these challenges, there has been recent interest in 
creating continuous speech recognition engines for 
embedded and mobile devices [4]. Two projects in this 
direction are PocketSphinx [11] and PocketSUMMIT [10].  

These developments pave the way for the study of speech 
recognition as a mobile text entry method.  Two important 
research questions arise.  First, what constitutes a good 
design for a speech recognition system on a modern mobile 
device?  Second, how efficient and practical is speech 
recognition as a mobile text entry method?  

In this paper, we describe Parakeet: a system designed for 
efficient mobile text entry using speech recognition. We 
have built a complete mobile speech recognition system 
that recognizes American and British English. Users enter 
text into their mobile Linux device (such as the Nokia 
N800) by speaking into a Bluetooth headset microphone 
(Figure 1). 

The design and development of Parakeet followed several 
design cycles. Our design was to a large extent guided by 
computational experiments on recorded speech audio. 
These experiments helped us from two perspectives. First, 
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they helped us visualize the tradeoffs between different 
design choices, and thereby guided our creative design 
process. Second, they aided us in finding the optimal 
parameter settings for our graphical user interface. 

This work provides insight into the design issues related to 
speech-based mobile text entry.  We also present the first 
study of speech-based text entry on an actual mobile device 
in an actual mobile setting.   

The rest of this paper is structured as follows. First, we 
discuss the principles which guided our design. Second, we 
describe our interface and detail the experiments which 
helped shape the design.  Third, we describe the details of 
our mobile speech recognition system.  Fourth, we present a 
user study validating our design. Fifth, we present results 
from an expert pilot study demonstrating the promising 
potential our system has as a mobile text entry solution. 
Finally, we discuss limitations and implications of our 
findings, point to future work, and conclude. 

DESIGN PRINCIPLES 

Avoid Cascading Errors 
Speech recognition is imperfect and recognition errors are 
ultimately unavoidable. Thus, error correction is a crucial 
part of any speech recognition interface.  As previous 
research has shown (e.g. [12]), users have difficultly 
correcting recognition errors using only speech. This is 
partly because errors may cascade – recognition in the 
correction phase may fail, requiring further corrections, and 
so on [12]. A possible solution is to use a different modality 
than speech for correction. For example, Suhm et al. [25] 
investigated a speech system which enabled corrections via 
pen gestures. For an in-depth review of multimodal speech 
interfaces, we refer the reader to Oviatt et al. [20]. 

To avoid cascading errors, we decided to create a 
multimodal speech interface.  In our system, recognition is 
first performed on a user’s utterance.  The recognition result 
is then corrected in a manner which is simple, direct and 
transparent to the user.  The correction process does not 
rely on any further error-prone recognition technologies. 

Exploit the Speech Recognition Hypothesis Space  
In a typical speech recognition interface, such as Dragon 
NaturallySpeaking, only the best recognition hypothesis is 
initially shown to the user.  In order to explore alternatives 
to this best hypothesis, the user must take explicit action 
such as highlighting some text and issuing a command. As 
observed by Kristensson and Zhai [16], this style of error 
correction interface introduces a degree of uncertainty.  The 
user has to hope his or her action will expose the desired 
correction. If it does not, the user has wasted effort. Such 
interfaces may lead to user frustration, which is a common 
problem in intelligent user interfaces in general. 

Therefore, we designed our correction interface so it avoids 
forcing users to blindly search the hypothesis space.  We 
wanted the user to be able to see immediately, and without 

explicit action, whether the desired correction was 
available.  If the desired correction was not easily available, 
the user could then undertake a more costly corrective 
measure (but a measure guaranteed to be successful). 

Efficient and Practical Interaction by Touch 
Mobile devices increasingly come with stylus or touch 
sensitive screens. These modalities enable us to implement 
a full direct manipulation user interface. Direct 
manipulation enables us to design a user interface where 
users can view and act on the rich set of recognition 
hypotheses we wanted to display.  

We preferred touch-interaction to stylus for three reasons. 
First, touch doesn’t require the user to utilize a stylus while 
on the go.  Second, one-handed usage is impossible with a 
stylus, and users tend to prefer mobile interfaces that can be 
operated with one hand [13]. Third, a well-designed touch-
screen interface can also be used with a stylus, but the 
converse does not necessarily hold. By creating a good 
touch-screen design, we are also creating an interface 
suitable for stylus use. 

Support Fragmented Interaction 
When users are entering text while walking around, they 
need to divide their attention between interacting with the 
mobile device and dealing with their surroundings.  
Oulasvirta et al. [19] found that users interacting with a 
mobile web browser while walking in a demanding setting 
attended to the device in 4-8 second bursts. This finding has 
two implications. First, our system needs to enable users to 
quickly process and respond to the interface. Second, our 
system needs to be designed so that it is easy for users to 
pick up from where they left off after an interruption. 

We therefore designed Parakeet to minimize attention 
demands.  For example, after recognition is completed, we 
flash the entire display screen and beep.  This simple 
feedback frees the user to attend to their surrounding almost 
entirely while waiting for recognition to complete.   

We also wanted to minimize the physical actions required.  
In a mobile setting, a large sequence of precise touch 
actions is likely to go wrong.  We designed towards an 
interface presenting more visual information (perhaps 
requiring several bursts of attention) but requiring fewer 
motor actions.  For example, the user might enter a few 
letters of a word and then scan a list of predictions which 
allow completion of the entire word with a single touch. 

INTERFACE DESCRIPTION 
The main part of our correction interface displays the 
recognizer’s best hypothesis along a single line at the top 
(Figure 2).  If the best hypothesis cannot fit on the screen, 
the user can scroll using the buttons on the left and right 
sides.  In addition to the best hypothesis, likely alternatives 
for each word in the best hypothesis are also displayed.  For 
example, in Figure 2 the word “imports” has two other 
competing words (“imported” and “import”). 
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This display is based on a word confusion network [9].  A 
word confusion network is a time-ordered set of clusters 
where each cluster contains competing word hypotheses 
along with their posterior probabilities.  The word 
confusion network is built from the lattice generated during 
the speech recognizer’s search. 

Ogata and Goto [18] also used a confusion network as a 
basis for a speech correction interface.  In relation to their 
work, our interface incorporates several novel aspects: 

• Word candidate order - Ogata and Goto [18] ordered all 
word candidates (including delete buttons) strictly by 
probability. We changed this so all delete buttons were in 
the bottom row. This was done for consistency and also 
to allow contiguous errors to be deleted in a single swipe. 

• Copying - We allow copying of words between clusters. 
This feature is described in detail later. 

• Keyboard fallback - We provide a fallback correction 
mechanism based on a predictive software keyboard. 

• Mobile design - Our interface is designed to work on a 
small mobile device using touch-interaction, rather than 
on a desktop using a mouse.  This requires careful 
attention to the size of user interface elements and the 
addition of a scrolling feature. 

Words in each cluster are displayed in order of their 
probability. While we could have adjusted button color or 
size based on these probabilities, our past work on 
confidence visualization suggests such a feature was 
unlikely to benefit users [28].  

By displaying more than the 1-best result, our interface 
allows the user to quickly scan other words that the 
recognizer thought were likely.  This is done without 
requiring the user to explicitly ask for alternatives as in 
status quo interfaces, such as Dragon NaturallySpeaking. 

Available Actions in the Word Confusion Network 

Substituting Words 
To substitute a word, the user can use several methods. The 
most direct method is to simply touch an alternate word in 
the confusion network.  This causes the selected word to 
change color and updates the word displayed in the top row.  
Sometimes several desired substitutions are in adjacent 
columns.  In this case, the user can cross each desired word 
to perform multiple substitutions with one gesture. 

Editing Words 
The user's desired word may not be one of the displayed 
alternatives.  By touching a word in the top row, or by 
double-tapping any word, the user is brought to a separate 
edit screen.  Here they can use a software keyboard to either 
edit the selected word or enter an entirely new word. 

Deleting Words 
To delete words, the user touches the delete button (a box 
with a diagonal X, cf. Figure 2). If the user wants to delete 

several words at once, the user can slide across adjacent 
delete buttons. In speech recognition, often the recognizer 
gets off track and outputs several erroneous words in a row.  
In such instances, it is particularly useful to delete several 
words at once by crossing contiguous delete buttons.  To 
easily allow such contiguous deletes, we aligned all delete 
buttons at the bottom. 

Inserting Words 
To insert a word, the user can touch the area between two 
columns.  This brings up a keyboard interface which allows 
the user to choose from a set of word candidates or write a 
new word (Figure 7)  A second option is to touch a 
preceding word (thereby opening the keyboard interface) 
and type a space and then the new word. 

Figure 2. The word confusion network correction interface.  
The user is crossing several words and delete in one action. 

Sometimes the user's desired word may appear in a 
different column from where the word is required.  A third 
way to insert a word is to copy a word from another 
column.  After touching a word for a moment, the 
background of the word changes and the word can be 
copied to another cluster (Figure 3).  During the copy, the 
current target cluster is highlighted in yellow in the top row 
of the display. 

 
Figure 3. The user is copying the word “to” by dragging it 

from its original column to the desired location. 

Correcting by Crossing 
Similar to Kurihara et al. [14], we allowed users to correct 
errors by making continuous crossing gestures. Figure 2 
shows one fluid gesture changing “to” to “of”, “imports” to 
“imported”, and finally deleting “and”. This crossing-based 
interaction is possible because in each column, only one 
item at a time can be selected. Therefore, the detection 
algorithm only needs to keep track of the last word or delete 
button crossed in each column. For example, in Figure 2 the 
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user has crossed “but” and the delete button in column 4.  
In this case, the detection algorithm will select the delete 
button as it was the last thing crossed.  Users can start 
crossing anywhere in the display and in any direction. 

The theoretical performance of crossing interfaces is of the 
same mathematical form as Fitts’ law [1,7]. At the same 
index of difficulty [7], crossing is more efficient or on par 
with pointing performance [1]. It is also likely that fluid 
crossing actions for corrections can be cognitively 
“chunked” into more meaningful actions [3].  Users may 
prefer to think about corrections of an utterance rather than 
corrections of a  (possibly unrelated) set of words. 

Finding Useful Actions 
We used computational experiments to guide our decisions 
on what interface actions to include.  We also used the 
experiments to decide how many word alternatives to use in 
each cluster.  The experiments were done by generating 
word confusion networks for three standard acoustic test 
sets (WSJ1 si_dt_05, WSJ0 si_et_05, WSJ0 si_dt_05, 1253 
utterances).  We assumed an “oracle” user.  The oracle 
made optimal use of a given confusion network and set of 
interface actions to correct as many errors as possible. 
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Figure 4.  The errors remaining (oracle WER) after correction 
using a confusion net with a given cluster size.  The top line is 

the performance of the original confusion net. Other lines 
show performance as correction features were added. 

As shown in Figure 4, increasing the cluster size allowed 
more errors to be corrected.   The majority of gains were 
observed by adding the first few alternatives.  This guided 
our decision to use a small cluster size of five.  By 
minimizing the cluster size, we were able to use larger 
buttons that are easier to touch.  Adding a delete button to 
every cluster was shown to substantially reduce errors 
(“Del” line, Figure 4).  This makes sense as every insertion 
error made by the recognizer can be corrected. 

We tested allowing copying words from clusters within two 
words of each other (“Copy+Del” line, Figure 4).  This 
provided a small gain.  Bigger gains were possible when we 
allowed copying across longer distances, but we anticipated 
users would be unlikely to copy words over long distances. 

Finally, we tested allowing words to be easily replaced with 
one of their morphological variants (e.g. replacing “import” 
with “imported” or “imports”).  This provided further error 
reductions (“Morph+Copy+Del” line, Figure 4). 

Word Substitution Prediction 
When a user double-taps a word in the confusion network, 
the keyboard interface opens.  In order to try and minimize 
the need to type a word, we decided to try and predict likely 
alternative words based on the word the user touched.  For 
example, if the user touched the word “constitutional”, the 
interface might propose morphological variants of the word, 
such as: “constitute”, “constitutes”, etc. (Figure 5). 

Before we settled on displaying morphological variants, we 
considered several alternatives. One alternative is to predict 
words that are acoustically close.  Another alternative is to 
propose word candidates based on the preceding word 
(using a forward language model), or based on the 
following word (using a backward language model).  For 
details on how we generated these alternatives, see [26]. 

 
Figure 5. The user touched the word “constitutional” in the 

confusion net. The morphological variants for “constitutional” 
are shown in a prediction row above the software keyboard. 
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Figure 6. The errors remaining (oracle WER) after correction 
using an interface offering a given number of predictions.  The 

top line is the baseline (no predictions). Other lines show 
performance of different types of predictions. 

We again simulated a perfect “oracle” user on our set of test 
word confusion networks.  As shown in Figure 6, all forms 
of predictions reduced oracle word error.  Providing more 
predictions further reduced error, but the majority of the 
gains were observed by five predictions.  This guided our 
decision to use a single row of word predictions. 

While acoustically based predictions performed the best, 
they are also highly unintuitive to users. As an example, 
“aback” is acoustically similar to “attack”.  It would be 

240



difficult for a user to know what word predictions would be 
offered when touching a word.  Language model 
predictions also suffer from being unintuitive.  They depend 
on surrounding context rather than the actual word the user 
wants to change. For these reasons, we decided to use 
morphological variants.  It is straightforward to explain to 
users that if they want a variant of a word differing in say 
ending, possessiveness, or grammatical number, they 
should touch the word and check the prediction row. 

PREDICTIVE SOFTWARE KEYBOARD 
Sometimes a user’s desired word does not appear anywhere 
in the interface. To allow entry of arbitrary words, we 
added a predictive software keyboard. 

Software Keyboard Design 
Previous research suggests that pointing performance is 
severely degraded when users are walking [5]. We therefore 
tried to make the keys as big as possible (Figure 7). 

Another explicit design decision was to make the keyboard 
literal – each key press is output immediately (as with an 
ordinary desktop keyboard). There are some proposed 
keyboards that can improve typing precision by inferring 
the intended letter keys rather than making a literal 
interpretation, e.g. [8,15]. However, these solutions are 
based on machine learning algorithms and could introduce 
further recognition errors should their inference be wrong. 
Since we want to avoid cascading errors, we opted for a 
traditional keyboard to provide fail-safe text entry. 

Typing Prediction 
We complemented the keyboard with typing prediction [6]. 
The keyboard suggests likely words based on what the user 
has typed so far (Figure 7). It finds predictions by searching 
a prefix-tree of 64K words.  The prediction display is 
populated with the most likely words (given a unigram 
language model) which match the prefix.  Matching 
predictions are displayed in alphabetical order.  As 
previously described, when users first open the keyboard, 
the prediction row is populated with morphological word 
variants.  These are replaced with prefix-based predictions 
as soon as the user begins typing. 

Typing prediction results were displayed on the screen     
350 ms after the last key press. This delay was introduced 
for two reasons. First, the prediction lookup and screen 
redraw introduces lag which could interfere with users’ 
typing. Second, a dynamically changing graphical interface 
might distract users from their typing task.   

MOBILE SPEECH RECOGNIZER 
Our speech recognizer was based on CMU Sphinx, using 
the PocketSphinx [11] decoder.  In this section, we give 
details of the recognition-related components of our system. 

Audio Capture 
We captured audio on the N800 using a Blue Parrot B150 
Bluetooth headset.  We chose this headset as it has a close-

talking boom microphone.  Audio sampled at 8 kHz was 
obtained using the GStreamer framework.  Audio was 
streamed to the recognizer as soon as the microphone was 
enabled.  This allowed decoding to begin even before the 
user had finished speaking.  As the user’s entire audio was 
not available at the start of recognition, we used Cepstral 
mean normalization based on a prior window of audio. 

Acoustic Model 
For fast performance, we opted for a semi-continuous 
acoustic model. Our acoustic model was trained following 
the recipe from [27].  We used a HMM topology of 5-states 
with skip transitions, 256 codebook Gaussians, cross-word 
triphones, and 39 CMU phones (plus silence).  Audio was 
parameterized into 13 Mel frequency cepstral coefficients 
plus their deltas and delta-deltas.  

Our US-English model was trained on 211 hours of WSJ 
training data, down-sampled to 8 kHz.  We used 8000 tied-
states and the CMU pronunciation dictionary. 

 
Figure 7. The predictive software keyboard. The user has 

typed “parl” and the most likely ways to complete the word 
are displayed in a row below the keyboard. 

Our UK-English model was trained on 16 hours of 
WSJCAM0 training data, down-sampled to 8 kHz.  We 
used 4000 tied-states and the BEEP pronunciation 
dictionary.  We mapped BEEP’s phone set to CMU’s and 
added missing words from the CMU dictionary.  Gender 
dependent UK-English models were created using MLLR 
adaptation of the means followed by MAP adaptation of the 
means, mixture weights and transition matrices. 

For both the US and UK models, speaker-dependent 
adaptation used MLLR adaptation of the means followed by 
MAP adaptation of the means and mixture weights. 

Language Model 
We trained a trigram language model using: newswire text 
from the CSR-III corpus (222M words), Knesser-Ney 
Smoothing, and the WSJ 5K word list (without verbalized 
punctuation).  Since our test sentences were taken from the 
CSR set-aside directory, we purposely chose the WSJ 5K 
vocabulary in order to introduce a small amount of out-of-
vocabulary (OOV) errors.  We thought it was important to 
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validate our design in the face of OOVs as they are 
typically unavoidable in real-world recognition tasks. 

The language model was one of the dominating factors in 
the memory footprint of our system. Normally, to control 
language model size, n-grams with a count below a 
threshold are discarded. We instead used no count cutoffs 
and performed entropy-pruning [24].  We found entropy-
pruning produced compact and well-performing models. 

Lattice Processing 
We obtained an initial recognition lattice from 
PocketSphinx [11].  We performed a forward/backward 
reduction on the lattice to reduce redundant nodes [29].  
The bigram lattice was then expanded and rescored using a 
compact trigram expansion algorithm [29].  The trigram 
lattice was pruned, removing lattice paths outside a beam 
width of the posterior probability of the best path.  A word 
confusion network was then created using a clustering 
algorithm [17].  The confusion network was pruned to limit 
the maximum size of each cluster and to eliminate clusters 
where the “no word” hypothesis dominated. 

Speaker Adaptation Environment 
Since we knew mobile recognition would be challenging, 
we wanted to improve accuracy by adapting the acoustic 
model to the user's voice.  Adaptation is done by having 
users read a set of sentences with known transcriptions.  
With a desktop dictation package, users typically record 
adaptation data while in front of their desktop computer. 

Adapt data Test data WER ± 95% CI

none indoor 15.87 ± 2.16

indoor indoor 12.61 ± 1.93

outdoor indoor 12.72 ± 1.94

none outdoor 21.56 ± 2.53

indoor outdoor 18.39 ± 2.39

outdoor outdoor 18.45 ± 2.37

0 10 20 30  
Table 1. The effect of adaptation environment on speech 

recognition word error rate (WER). The bars show means and 
95% confidence intervals (from a bootstrap estimate [2]). 

When taking speech recognition mobile, a question arises 
whether it is worth recording adaptation data in a mobile 
rather than a desktop setting.  Price and colleagues [21] 
investigated this by having half of their participants record 
adaptation data while walking on a noisy treadmill, while 
the other half recorded data while seated in an office (with 
simulated treadmill noise playing).  While not statistically 
significant, they found that users who had performed 
adaptation while on the treadmill had a lower word error 
rate (WER) both when tested on the treadmill and when 
seated.  They suggest that adapting in a more demanding 
condition might improve overall recognition performance 
(though they provide no insight into why this might be). 

We conducted a small within-subject experiment to test the 
effects of adaptation environment.  We had four US-
English speakers record two identical sets of adaptation 
data on the N800.  One was recorded while walking outside 
and the other while seated inside.  For an adaptation set, we 
used 40 phonetically diverse sentences from the WSJ 
corpus.  Speakers also recorded 125 test sentences from the 
CSR set-aside directory.  Two speakers did the outdoor 
recording first, while the other two did the indoor 
recordings first.  Recognition experiments were conducted 
afterwards on a desktop computer. 

As shown in Table 1, performing adaptation either indoors 
or outdoors improved accuracy, reducing word errors by 
about 20% relative compared to doing no adaptation.  We 
found recognition was much harder outdoors than indoors, 
increasing the word error rate by 45% relative.  The error 
rates of the indoor and outdoor adapted models were very 
similar regardless of the test set.  Since we found no 
particular advantage to recording adaptation data outdoors, 
we decided to record all adaptation data indoors. 

USER STUDY 
To see how well our system worked in practice, we 
conducted an initial user study.  Our primary aim was to 
validate our design. In the study, users spoke and corrected 
sentences while seated indoor and while walking outdoors. 

Participants 
We recruited four participants (3 males, 1 female) from the 
university campus. 3 participants used the UK acoustic 
model, 1 participant used the US model.  Their ages ranged 
from 22 to 39.  Participants had no significant prior 
experience using speech or touch interfaces.  

Method and Setup 
Participants used a Nokia N800 Internet Tablet (Figure 1). 
The physical dimensions of the device (length × width × 
thickness) were 75 × 144 × 13mm. The screen had a 
resolution of 800 × 480 pixels and a size of 90 × 55 mm. 

For stimuli text, we used sentences from the set-aside 
directory of the CSR-III corpus.  These sentences were 
excluded from language model training. We chose 
sentences with between 8 and 16 words.  Using our 5K 
WSJ language model, 2.4% of words were out-of-
vocabulary and the average per-word perplexity was 18. 

Participants took part in a single two-hour session.  
Participants first trained the speech recognizer for 10 
minutes.  They then received a 5 minute introduction to the 
interface, followed by 10 minutes of practice.  Participants 
proceeded to either the seated indoor condition or the 
walking outdoor condition.  In the outdoor condition, 
participants walked circles around our building on a safe 
pedestrian path and under constant supervision.  Each 
condition lasted about 30 minutes. 

In both conditions, participants were presented with stimuli 
sentences in a large font.  When ready, participants pressed 
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a MIC ON button, read the sentence, then pressed a MIC OFF 
button.  After a recognition delay, the device beeped and 
the participant hit a CORRECT button to enter the correction 
interface.  After correcting a sentence, the participant 
pressed a DONE button to move to the next sentence. 
Participants were told to proceed “quickly and accurately”. 

Results 
On average, participants completed 41 sentences  indoors 
(sd = 7) and 27 sentences outdoors (sd = 4).  Figure 8 
shows the GPS track of one participant’s outdoor trial. 

We found the outdoor condition presented some challenges 
for our system.  Our trials took place during a period of 
windy weather with an average wind speed of 13 knots, 
gusting to 28 knots.  This made recognition more difficult 
on the windward sections of the course.  In addition, one 
trial took place on a sunny day and that participant had 
difficulty seeing the N800’s screen on parts of the course. 

 
Figure 8. One participant’s GPS track line around the 

Cavendish Laboratory. The image is from Google Earth. 

Error Rate 
Word error rate (WER) was calculated as the word edit 
distance between the stimuli sentence and the final sentence 
divided by the number of words in the stimuli sentence. 

Table 2 shows the mean error rates obtained indoors and 
outdoors. The before correction error rate is the error rate 
of the speech recognizer’s output. The after correction error 
rate is the error rate after participants corrected the 
recognition result.  As shown in Table 2, the recognizer’s 
error rate was considerably higher outdoors than indoors.  
In both conditions, participants corrected almost all errors. 

Entry Rate 
Entry rate was measured in words-per-minute (WPM). We 
used the standard convention defining a word as five 
consecutive characters. The time duration to enter a 
sentence was calculated as the time between pressing MIC 
ON and pressing DONE.  Table 3 shows the mean entry 
rates.  As expected, users were faster indoors than outdoors. 

Correction Method Usage 
Participants could correct errors either using the word 
confusion network or the software keyboard. If participants 

forget the sentence, they also could invoke a help screen 
which displayed the stimuli sentence again. 

Indoors, participants spent 62% of their time in the word 
confusion network, 32% in the predictive software 
keyboard, and 6% in help. Outdoors, participants spent 56% 
of their time in the word confusion network, 33% in the 
predictive software keyboard, and 11% in help. 

Condition Text WER ± 95% CI

indoor before correction 16.17 ± 4.50

outdoor before correction 25.63 ± 3.13

indoor after correction 1.22 ± 1.04

outdoor after correction 2.23 ± 1.68

0 10 20 30  
Table 2.  Novice users’ mean word error rates (WER) and 

95% confidence intervals. 

Condition WPM ± 95% CI

indoor 18.36 ± 1.80

outdoor 12.83 ± 0.55

0 5 10 15 20  
Table 3. Novice users’ mean entry rates in words-per-minute 

(WPM) and 95% confidence intervals. 
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Figure 9. How often words in each row in the confusion 
network were selected and the method  used (touch or 

crossing).  Top is the 1-best result, Alt1-Alt4 are alternative 
words (Alt1 is the top alternative), Delete is the delete button.  

Word Confusion Network Usage 
Figure 9 shows the overall usage of the word confusion 
network. The most commonly selected row in the confusion 
network was delete.  When substituting words, selections 
decrease in frequency as a function of how far away the 
words were from the 1-best result (Alt1-Alt4 in Figure 9).  
This validated our computational results which showed the 
first few alternatives were the most useful for corrections.   

Users most often selected single buttons via touch.  When 
they did select multiple buttons via a crossing gesture, they 
primarily selected delete buttons.  This showed aligning 
delete buttons in a single row was a useful feature. 
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Out of 273 tasks, 82 had a completely correct recognition 
result.  Users completed 80 of these tasks without making 
any unnecessary actions (such as touching a word or using 
the keyboard).  In 27 of the 273 tasks, the sentence could be 
completely corrected using only the confusion network. In 
these instances, users corrected 26 of the sentences (96%) 
using only the confusion network. This shows users took 
advantage of the confusion network whenever possible.  

Of 416 selection actions in the confusion network,   users 
touched a single word 374 times (90%) and crossed 
multiple words 42 times (10%). When crossing, users 
selected 2.6 buttons on average.  The copy words feature 
(Figure 3) was only used three times. 

Scrolling 
Only 2% of recognition results fit on one screen. The 
average width of a result was 1083 pixels (sd = 266).  The 
display width (minus scroll buttons) was 700 pixels. So on 
average, users needed to scroll once to check their sentence. 

Software Keyboard Usage 
Of the 270 times users invoked the keyboard, they chose a 
morphological prediction 18 times (7%).  While indoors, 
17% of key presses were the backspace key.  While 
outdoors, 25% of key presses were the backspace key. 

In total, participants wrote 265 words with the keyboard. 
When typing those words, participants used the typing 
prediction 54% of the time. On average, participants typed 
about 3 letters (mean = 3.3) before selecting a prediction. 
When participants did not use prediction, the desired word 
had been displayed by the system 70% of the time.  In these 
cases, we found on average the user only needed to type a 
few additional letters (mean = 1.6) to complete their word.  
This is likely why they ignored the word prediction. 

EXPERT PILOT STUDY 
To illustrate the potential of speech as a viable mobile text 
entry method, we measured one expert user (one of the 
authors) over seven sessions.  The goal of the expert pilot 
was to demonstrate how fast our technique could potentially 
go (as done in other text entry studies, such as [15]). 

Each expert session had an indoor and outdoor condition as 
previously described.  However, instead of a fixed time 
limit, the expert instead completed a fixed number of 
sentences.  The expert had several years of experience 
developing and using speech recognition systems.  The 
expert used the US acoustic model.  

Results 
In total, the expert completed 313 sentences indoors and 
309 outdoors.  Table 4 shows the recognition word error 
rates and final corrected error rates obtained by our expert. 

Despite relatively long recognition delays (mean = 18 s, sd  
= 7 s), our expert’s text entry rates were surprisingly good 
(Table 5).  If we removed the time the expert spent waiting 
for recognition, his writing speed over doubled.  While 

having no delay is not realistic, as devices and recognizers 
become faster, a good amount of this gain could be realized.  

Condition Text WER ± 95% CI

indoor before correction 8.46 ± 1.60

outdoor before correction 14.83 ± 2.17

indoor after correction 0.94 ± 0.37

outdoor after correction 1.52 ± 0.99

0 5 10 15  
Table 4. Expert mean word error rates (WER).  The 95% 

confidence intervals reflect the individual’s variance. 

Condition Rec delay WPM ± 95% CI

indoor actual 24.43 ± 0.70

outdoor actual 19.60 ± 0.72

indoor none 53.18 ± 1.94

outdoor none 44.79 ± 2.05

0 20 40 60
 

Table 5. Expert mean entry rates. The 95% confidence 
intervals reflect the individual’s variance. The bottom two 
rows show  performance assuming no recognition delay. 
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Figure 10. Plot of the entry rate in words-per-minute (WPM) 
and word error rate (WER) of sentences written by the expert.    

As expected, walking outdoors slowed entry, but it did so 
only by about 20% relative. About half of the expert’s 
sentences (51%) were recognized with no errors.  
Unsurprisingly, these were completed the fastest (27 WPM 
indoors, 24 WPM outdoors).  The trend lines in Figure 10 
show how entry rate slowed as recognition errors increased.  
As errors increased, the decrease in entry rate was not as 
dramatic as one might expect. For example, in the 10% 
word error range, entry rates dropped by only about 15% in 
both conditions.  

DISCUSSION 

Limitations 
We used a 5K vocabulary and low-perplexity sentences. 
While we would have liked to test users on more difficult 
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text, we wanted a “useable” level of recognition errors.  In 
our opinion, there is no point testing speech correction 
interfaces at really high word error rates.  If there are too 
many errors, it would likely be better not to use speech in 
the first place.  While commercial recognizers like Dragon 
achieve fast and accurate recognition on difficult text on a 
desktop, the same is not currently possible using a research 
recognizer on a mobile device.  Recognizers and devices 
will undoubtedly improve, but in the meantime, we believe 
we can explore the design and usability of speech interfaces 
by giving users simpler recognition tasks. 

Due to limited computational resources on our device, users 
experienced long recognition delays (mean = 22 s, sd = 14 
s). Some (pathological) utterances took up to a minute to 
recognize. As devices become faster, delays will be reduced 
and entry rates should improve. Still, it is worth noting that 
our novice’s (corrected) entry rate of 13 WPM walking 
outdoors (including these long recognition delays) was still 
about as fast as the entry rates users obtained while seated 
indoors using T9 predictive text after several sessions [30]. 

Design Implications 

Review Screen 
Many sentences were recognized completely correct. 
Despite this, users were forced to enter the word confusion 
network screen and scroll through the entire result to ensure 
it was correct. It may be advantageous to first allow a 
simple single screen review of the entire recognition result. 

Easy Fallback 
We noticed that for some utterances, the recognition result 
had so some many errors as to make correction an exercise 
in erasing everything and typing the entire sentence.  Our 
interface should better support this circumstance, allowing 
users to fallback to keyboard only entry when necessary. 

High Contrast 
While outdoors, users sometimes found it hard to read the 
screen because of glare. The user interface could benefit 
from a redesign that puts more emphasis on high contrast. 

More Efficient Use of Screen Real Estate 
We found users sometimes had trouble with target 
selection.  Particularly in the word confusion network, 
buttons could benefit from being larger. Given that users 
made relatively few selections in the lowest rows in the 
word confusion network (cf. Figure 9), we may want to 
remove a row or two to provide space for larger buttons. 

Improved Speech Recognition 
Recognition delays after users hit the MIC OFF button 
accounted for 50% of entry times. As mobile devices get 
faster, these delays will be reduced significantly.  This will 
have a very large impact on the practical entry rates 
achievable by continuous speech recognition on a mobile 
device.  Improvements in recognition accuracy will also 
clearly help improve text entry throughput. 

CONCLUSIONS 
In this paper we presented Parakeet – a touch-screen system 
for continuous speech recognition on mobile devices. To 
our knowledge, we are the first to explore a practical 
mobile continuous speech recognition system for text entry. 
Our design of Parakeet took advantage of empirical and 
qualitative findings in the HCI literature. In addition, 
wherever possible, we adopted an engineering-driven 
design process where we optimized our user interface based 
on our system’s predicted behavior on empirical data.  

In Parakeet, we introduced several novel user interface 
enhancements. The final design of Parakeet was validated 
by a user study.  We had participants use our system both 
seated indoors and while walking outdoors.  To our 
knowledge, no speech recognition text entry system has 
been tested with users actually walking around.  Among 
other things, the study confirmed that word confusion 
networks were a useful correction interface for users.  
When the intended sentence was in the confusion network, 
users were able to find and select it 96% of the time.  We 
also found that participants used the crossing feature about 
10% of the time, showing that crossing was a useful 
complementary feature.  Last, we gave practical design 
recommendations based on lessons learned in our study. 

Our expert pilot study demonstrated that speech may be a 
competitive mobile text entry method, particularly in an 
actual mobile setting where users are moving around.  Our 
immediate future work is to run a full-scale experiment 
validating this hypothesis. 
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