
Parakeet: A Continuous Speech Recognition System
for Mobile Touch-Screen Devices

Keith Vertanen and Per Ola Kristensson
Cavendish Laboratory, University of Cambridge

JJ Thomson Avenue, Cambridge, UK
{kv277, pok21}@cam.ac.uk

ABSTRACT
We present Parakeet, a system for continuous speech
recognition on mobile touch-screen devices. The design of
Parakeet was guided by computational experiments and
validated by a user study. Participants had an average text
entry rate of 18 words-per-minute (WPM) while seated
indoors and 13 WPM while walking outdoors. In an expert
pilot study, we found that speech recognition has the
potential to be a highly competitive mobile text entry
method, particularly in an actual mobile setting where users
are walking around while entering text.

Author Keywords
Continuous speech recognition, mobile text entry, text
input, touch-screen interface, error correction, speech input,
word confusion network, predictive keyboard

ACM Classification Keywords
H5.2. User Interfaces: Voice I/O

INTRODUCTION
The advantages of speech recognition as a mobile text entry
method seem obvious and highly attractive. Speaking is a
naturally acquired skill which does not demand much
practice from users. Speech can also be very fast. Users can
speak up to 200 WPM [22].

However, speech recognition remains to prove itself as a
competitive mobile text entry method. At least in the past,
speech recognition performance suffered from poor
accuracy [12]. The privacy implications of using speech as
the sole modality for text entry are also obvious. Further, it
has been argued that using speech as a text entry method
also carries cognitive costs that may limit speech
recognition entry rates in practice [23].

Figure 1. The Nokia N800 device and a Bluetooth headset. The

Parakeet continuous speech recognition system is shown
running on the device.

From an engineering perspective, speech recognition
demands a device with more memory and processing power
than required by traditional mobile text entry methods, such
as predictive text or character recognition.

Despite these challenges, there has been recent interest in
creating continuous speech recognition engines for
embedded and mobile devices [4]. Two projects in this
direction are PocketSphinx [11] and PocketSUMMIT [10].

These developments pave the way for the study of speech
recognition as a mobile text entry method. Two important
research questions arise. First, what constitutes a good
design for a speech recognition system on a modern mobile
device? Second, how efficient and practical is speech
recognition as a mobile text entry method?

In this paper, we describe Parakeet: a system designed for
efficient mobile text entry using speech recognition. We
have built a complete mobile speech recognition system
that recognizes American and British English. Users enter
text into their mobile Linux device (such as the Nokia
N800) by speaking into a Bluetooth headset microphone
(Figure 1).

The design and development of Parakeet followed several
design cycles. Our design was to a large extent guided by
computational experiments on recorded speech audio.
These experiments helped us from two perspectives. First,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’09, February 8–11, 2009, Sanibel Island, Florida, USA.
Copyright 2009 ACM 978-1-60558-331-0/09/02...$5.00.

237

they helped us visualize the tradeoffs between different
design choices, and thereby guided our creative design
process. Second, they aided us in finding the optimal
parameter settings for our graphical user interface.

This work provides insight into the design issues related to
speech-based mobile text entry. We also present the first
study of speech-based text entry on an actual mobile device
in an actual mobile setting.

The rest of this paper is structured as follows. First, we
discuss the principles which guided our design. Second, we
describe our interface and detail the experiments which
helped shape the design. Third, we describe the details of
our mobile speech recognition system. Fourth, we present a
user study validating our design. Fifth, we present results
from an expert pilot study demonstrating the promising
potential our system has as a mobile text entry solution.
Finally, we discuss limitations and implications of our
findings, point to future work, and conclude.

DESIGN PRINCIPLES

Avoid Cascading Errors
Speech recognition is imperfect and recognition errors are
ultimately unavoidable. Thus, error correction is a crucial
part of any speech recognition interface. As previous
research has shown (e.g. [12]), users have difficultly
correcting recognition errors using only speech. This is
partly because errors may cascade – recognition in the
correction phase may fail, requiring further corrections, and
so on [12]. A possible solution is to use a different modality
than speech for correction. For example, Suhm et al. [25]
investigated a speech system which enabled corrections via
pen gestures. For an in-depth review of multimodal speech
interfaces, we refer the reader to Oviatt et al. [20].

To avoid cascading errors, we decided to create a
multimodal speech interface. In our system, recognition is
first performed on a user’s utterance. The recognition result
is then corrected in a manner which is simple, direct and
transparent to the user. The correction process does not
rely on any further error-prone recognition technologies.

Exploit the Speech Recognition Hypothesis Space
In a typical speech recognition interface, such as Dragon
NaturallySpeaking, only the best recognition hypothesis is
initially shown to the user. In order to explore alternatives
to this best hypothesis, the user must take explicit action
such as highlighting some text and issuing a command. As
observed by Kristensson and Zhai [16], this style of error
correction interface introduces a degree of uncertainty. The
user has to hope his or her action will expose the desired
correction. If it does not, the user has wasted effort. Such
interfaces may lead to user frustration, which is a common
problem in intelligent user interfaces in general.

Therefore, we designed our correction interface so it avoids
forcing users to blindly search the hypothesis space. We
wanted the user to be able to see immediately, and without

explicit action, whether the desired correction was
available. If the desired correction was not easily available,
the user could then undertake a more costly corrective
measure (but a measure guaranteed to be successful).

Efficient and Practical Interaction by Touch
Mobile devices increasingly come with stylus or touch
sensitive screens. These modalities enable us to implement
a full direct manipulation user interface. Direct
manipulation enables us to design a user interface where
users can view and act on the rich set of recognition
hypotheses we wanted to display.

We preferred touch-interaction to stylus for three reasons.
First, touch doesn’t require the user to utilize a stylus while
on the go. Second, one-handed usage is impossible with a
stylus, and users tend to prefer mobile interfaces that can be
operated with one hand [13]. Third, a well-designed touch-
screen interface can also be used with a stylus, but the
converse does not necessarily hold. By creating a good
touch-screen design, we are also creating an interface
suitable for stylus use.

Support Fragmented Interaction
When users are entering text while walking around, they
need to divide their attention between interacting with the
mobile device and dealing with their surroundings.
Oulasvirta et al. [19] found that users interacting with a
mobile web browser while walking in a demanding setting
attended to the device in 4-8 second bursts. This finding has
two implications. First, our system needs to enable users to
quickly process and respond to the interface. Second, our
system needs to be designed so that it is easy for users to
pick up from where they left off after an interruption.

We therefore designed Parakeet to minimize attention
demands. For example, after recognition is completed, we
flash the entire display screen and beep. This simple
feedback frees the user to attend to their surrounding almost
entirely while waiting for recognition to complete.

We also wanted to minimize the physical actions required.
In a mobile setting, a large sequence of precise touch
actions is likely to go wrong. We designed towards an
interface presenting more visual information (perhaps
requiring several bursts of attention) but requiring fewer
motor actions. For example, the user might enter a few
letters of a word and then scan a list of predictions which
allow completion of the entire word with a single touch.

INTERFACE DESCRIPTION
The main part of our correction interface displays the
recognizer’s best hypothesis along a single line at the top
(Figure 2). If the best hypothesis cannot fit on the screen,
the user can scroll using the buttons on the left and right
sides. In addition to the best hypothesis, likely alternatives
for each word in the best hypothesis are also displayed. For
example, in Figure 2 the word “imports” has two other
competing words (“imported” and “import”).

238

This display is based on a word confusion network [9]. A
word confusion network is a time-ordered set of clusters
where each cluster contains competing word hypotheses
along with their posterior probabilities. The word
confusion network is built from the lattice generated during
the speech recognizer’s search.

Ogata and Goto [18] also used a confusion network as a
basis for a speech correction interface. In relation to their
work, our interface incorporates several novel aspects:

• Word candidate order - Ogata and Goto [18] ordered all
word candidates (including delete buttons) strictly by
probability. We changed this so all delete buttons were in
the bottom row. This was done for consistency and also
to allow contiguous errors to be deleted in a single swipe.

• Copying - We allow copying of words between clusters.
This feature is described in detail later.

• Keyboard fallback - We provide a fallback correction
mechanism based on a predictive software keyboard.

• Mobile design - Our interface is designed to work on a
small mobile device using touch-interaction, rather than
on a desktop using a mouse. This requires careful
attention to the size of user interface elements and the
addition of a scrolling feature.

Words in each cluster are displayed in order of their
probability. While we could have adjusted button color or
size based on these probabilities, our past work on
confidence visualization suggests such a feature was
unlikely to benefit users [28].

By displaying more than the 1-best result, our interface
allows the user to quickly scan other words that the
recognizer thought were likely. This is done without
requiring the user to explicitly ask for alternatives as in
status quo interfaces, such as Dragon NaturallySpeaking.

Available Actions in the Word Confusion Network

Substituting Words
To substitute a word, the user can use several methods. The
most direct method is to simply touch an alternate word in
the confusion network. This causes the selected word to
change color and updates the word displayed in the top row.
Sometimes several desired substitutions are in adjacent
columns. In this case, the user can cross each desired word
to perform multiple substitutions with one gesture.

Editing Words
The user's desired word may not be one of the displayed
alternatives. By touching a word in the top row, or by
double-tapping any word, the user is brought to a separate
edit screen. Here they can use a software keyboard to either
edit the selected word or enter an entirely new word.

Deleting Words
To delete words, the user touches the delete button (a box
with a diagonal X, cf. Figure 2). If the user wants to delete

several words at once, the user can slide across adjacent
delete buttons. In speech recognition, often the recognizer
gets off track and outputs several erroneous words in a row.
In such instances, it is particularly useful to delete several
words at once by crossing contiguous delete buttons. To
easily allow such contiguous deletes, we aligned all delete
buttons at the bottom.

Inserting Words
To insert a word, the user can touch the area between two
columns. This brings up a keyboard interface which allows
the user to choose from a set of word candidates or write a
new word (Figure 7) A second option is to touch a
preceding word (thereby opening the keyboard interface)
and type a space and then the new word.

Figure 2. The word confusion network correction interface.
The user is crossing several words and delete in one action.

Sometimes the user's desired word may appear in a
different column from where the word is required. A third
way to insert a word is to copy a word from another
column. After touching a word for a moment, the
background of the word changes and the word can be
copied to another cluster (Figure 3). During the copy, the
current target cluster is highlighted in yellow in the top row
of the display.

Figure 3. The user is copying the word “to” by dragging it

from its original column to the desired location.

Correcting by Crossing
Similar to Kurihara et al. [14], we allowed users to correct
errors by making continuous crossing gestures. Figure 2
shows one fluid gesture changing “to” to “of”, “imports” to
“imported”, and finally deleting “and”. This crossing-based
interaction is possible because in each column, only one
item at a time can be selected. Therefore, the detection
algorithm only needs to keep track of the last word or delete
button crossed in each column. For example, in Figure 2 the

239

user has crossed “but” and the delete button in column 4.
In this case, the detection algorithm will select the delete
button as it was the last thing crossed. Users can start
crossing anywhere in the display and in any direction.

The theoretical performance of crossing interfaces is of the
same mathematical form as Fitts’ law [1,7]. At the same
index of difficulty [7], crossing is more efficient or on par
with pointing performance [1]. It is also likely that fluid
crossing actions for corrections can be cognitively
“chunked” into more meaningful actions [3]. Users may
prefer to think about corrections of an utterance rather than
corrections of a (possibly unrelated) set of words.

Finding Useful Actions
We used computational experiments to guide our decisions
on what interface actions to include. We also used the
experiments to decide how many word alternatives to use in
each cluster. The experiments were done by generating
word confusion networks for three standard acoustic test
sets (WSJ1 si_dt_05, WSJ0 si_et_05, WSJ0 si_dt_05, 1253
utterances). We assumed an “oracle” user. The oracle
made optimal use of a given confusion network and set of
interface actions to correct as many errors as possible.

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

O
ra

c
le

 W
E

R
 (

%
)

Confusion net max cluster size

Orig
Del

Copy + Del
Morph + Copy + Del

Figure 4. The errors remaining (oracle WER) after correction
using a confusion net with a given cluster size. The top line is

the performance of the original confusion net. Other lines
show performance as correction features were added.

As shown in Figure 4, increasing the cluster size allowed
more errors to be corrected. The majority of gains were
observed by adding the first few alternatives. This guided
our decision to use a small cluster size of five. By
minimizing the cluster size, we were able to use larger
buttons that are easier to touch. Adding a delete button to
every cluster was shown to substantially reduce errors
(“Del” line, Figure 4). This makes sense as every insertion
error made by the recognizer can be corrected.

We tested allowing copying words from clusters within two
words of each other (“Copy+Del” line, Figure 4). This
provided a small gain. Bigger gains were possible when we
allowed copying across longer distances, but we anticipated
users would be unlikely to copy words over long distances.

Finally, we tested allowing words to be easily replaced with
one of their morphological variants (e.g. replacing “import”
with “imported” or “imports”). This provided further error
reductions (“Morph+Copy+Del” line, Figure 4).

Word Substitution Prediction
When a user double-taps a word in the confusion network,
the keyboard interface opens. In order to try and minimize
the need to type a word, we decided to try and predict likely
alternative words based on the word the user touched. For
example, if the user touched the word “constitutional”, the
interface might propose morphological variants of the word,
such as: “constitute”, “constitutes”, etc. (Figure 5).

Before we settled on displaying morphological variants, we
considered several alternatives. One alternative is to predict
words that are acoustically close. Another alternative is to
propose word candidates based on the preceding word
(using a forward language model), or based on the
following word (using a backward language model). For
details on how we generated these alternatives, see [26].

Figure 5. The user touched the word “constitutional” in the

confusion net. The morphological variants for “constitutional”
are shown in a prediction row above the software keyboard.

7.0

7.5

8.0

8.5

9.0

9.5

10.0

 1 2 3 4 5 6 7 8 9 10

O
ra

c
le

 W
E

R
 (

%
)

Word predictions offered

None
Morph

Acoustic
Fwd LM

Back LM

Figure 6. The errors remaining (oracle WER) after correction
using an interface offering a given number of predictions. The

top line is the baseline (no predictions). Other lines show
performance of different types of predictions.

We again simulated a perfect “oracle” user on our set of test
word confusion networks. As shown in Figure 6, all forms
of predictions reduced oracle word error. Providing more
predictions further reduced error, but the majority of the
gains were observed by five predictions. This guided our
decision to use a single row of word predictions.

While acoustically based predictions performed the best,
they are also highly unintuitive to users. As an example,
“aback” is acoustically similar to “attack”. It would be

240

difficult for a user to know what word predictions would be
offered when touching a word. Language model
predictions also suffer from being unintuitive. They depend
on surrounding context rather than the actual word the user
wants to change. For these reasons, we decided to use
morphological variants. It is straightforward to explain to
users that if they want a variant of a word differing in say
ending, possessiveness, or grammatical number, they
should touch the word and check the prediction row.

PREDICTIVE SOFTWARE KEYBOARD
Sometimes a user’s desired word does not appear anywhere
in the interface. To allow entry of arbitrary words, we
added a predictive software keyboard.

Software Keyboard Design
Previous research suggests that pointing performance is
severely degraded when users are walking [5]. We therefore
tried to make the keys as big as possible (Figure 7).

Another explicit design decision was to make the keyboard
literal – each key press is output immediately (as with an
ordinary desktop keyboard). There are some proposed
keyboards that can improve typing precision by inferring
the intended letter keys rather than making a literal
interpretation, e.g. [8,15]. However, these solutions are
based on machine learning algorithms and could introduce
further recognition errors should their inference be wrong.
Since we want to avoid cascading errors, we opted for a
traditional keyboard to provide fail-safe text entry.

Typing Prediction
We complemented the keyboard with typing prediction [6].
The keyboard suggests likely words based on what the user
has typed so far (Figure 7). It finds predictions by searching
a prefix-tree of 64K words. The prediction display is
populated with the most likely words (given a unigram
language model) which match the prefix. Matching
predictions are displayed in alphabetical order. As
previously described, when users first open the keyboard,
the prediction row is populated with morphological word
variants. These are replaced with prefix-based predictions
as soon as the user begins typing.

Typing prediction results were displayed on the screen
350 ms after the last key press. This delay was introduced
for two reasons. First, the prediction lookup and screen
redraw introduces lag which could interfere with users’
typing. Second, a dynamically changing graphical interface
might distract users from their typing task.

MOBILE SPEECH RECOGNIZER
Our speech recognizer was based on CMU Sphinx, using
the PocketSphinx [11] decoder. In this section, we give
details of the recognition-related components of our system.

Audio Capture
We captured audio on the N800 using a Blue Parrot B150
Bluetooth headset. We chose this headset as it has a close-

talking boom microphone. Audio sampled at 8 kHz was
obtained using the GStreamer framework. Audio was
streamed to the recognizer as soon as the microphone was
enabled. This allowed decoding to begin even before the
user had finished speaking. As the user’s entire audio was
not available at the start of recognition, we used Cepstral
mean normalization based on a prior window of audio.

Acoustic Model
For fast performance, we opted for a semi-continuous
acoustic model. Our acoustic model was trained following
the recipe from [27]. We used a HMM topology of 5-states
with skip transitions, 256 codebook Gaussians, cross-word
triphones, and 39 CMU phones (plus silence). Audio was
parameterized into 13 Mel frequency cepstral coefficients
plus their deltas and delta-deltas.

Our US-English model was trained on 211 hours of WSJ
training data, down-sampled to 8 kHz. We used 8000 tied-
states and the CMU pronunciation dictionary.

Figure 7. The predictive software keyboard. The user has

typed “parl” and the most likely ways to complete the word
are displayed in a row below the keyboard.

Our UK-English model was trained on 16 hours of
WSJCAM0 training data, down-sampled to 8 kHz. We
used 4000 tied-states and the BEEP pronunciation
dictionary. We mapped BEEP’s phone set to CMU’s and
added missing words from the CMU dictionary. Gender
dependent UK-English models were created using MLLR
adaptation of the means followed by MAP adaptation of the
means, mixture weights and transition matrices.

For both the US and UK models, speaker-dependent
adaptation used MLLR adaptation of the means followed by
MAP adaptation of the means and mixture weights.

Language Model
We trained a trigram language model using: newswire text
from the CSR-III corpus (222M words), Knesser-Ney
Smoothing, and the WSJ 5K word list (without verbalized
punctuation). Since our test sentences were taken from the
CSR set-aside directory, we purposely chose the WSJ 5K
vocabulary in order to introduce a small amount of out-of-
vocabulary (OOV) errors. We thought it was important to

241

validate our design in the face of OOVs as they are
typically unavoidable in real-world recognition tasks.

The language model was one of the dominating factors in
the memory footprint of our system. Normally, to control
language model size, n-grams with a count below a
threshold are discarded. We instead used no count cutoffs
and performed entropy-pruning [24]. We found entropy-
pruning produced compact and well-performing models.

Lattice Processing
We obtained an initial recognition lattice from
PocketSphinx [11]. We performed a forward/backward
reduction on the lattice to reduce redundant nodes [29].
The bigram lattice was then expanded and rescored using a
compact trigram expansion algorithm [29]. The trigram
lattice was pruned, removing lattice paths outside a beam
width of the posterior probability of the best path. A word
confusion network was then created using a clustering
algorithm [17]. The confusion network was pruned to limit
the maximum size of each cluster and to eliminate clusters
where the “no word” hypothesis dominated.

Speaker Adaptation Environment
Since we knew mobile recognition would be challenging,
we wanted to improve accuracy by adapting the acoustic
model to the user's voice. Adaptation is done by having
users read a set of sentences with known transcriptions.
With a desktop dictation package, users typically record
adaptation data while in front of their desktop computer.

Adapt data Test data WER ± 95% CI

none indoor 15.87 ± 2.16

indoor indoor 12.61 ± 1.93

outdoor indoor 12.72 ± 1.94

none outdoor 21.56 ± 2.53

indoor outdoor 18.39 ± 2.39

outdoor outdoor 18.45 ± 2.37

0 10 20 30
Table 1. The effect of adaptation environment on speech

recognition word error rate (WER). The bars show means and
95% confidence intervals (from a bootstrap estimate [2]).

When taking speech recognition mobile, a question arises
whether it is worth recording adaptation data in a mobile
rather than a desktop setting. Price and colleagues [21]
investigated this by having half of their participants record
adaptation data while walking on a noisy treadmill, while
the other half recorded data while seated in an office (with
simulated treadmill noise playing). While not statistically
significant, they found that users who had performed
adaptation while on the treadmill had a lower word error
rate (WER) both when tested on the treadmill and when
seated. They suggest that adapting in a more demanding
condition might improve overall recognition performance
(though they provide no insight into why this might be).

We conducted a small within-subject experiment to test the
effects of adaptation environment. We had four US-
English speakers record two identical sets of adaptation
data on the N800. One was recorded while walking outside
and the other while seated inside. For an adaptation set, we
used 40 phonetically diverse sentences from the WSJ
corpus. Speakers also recorded 125 test sentences from the
CSR set-aside directory. Two speakers did the outdoor
recording first, while the other two did the indoor
recordings first. Recognition experiments were conducted
afterwards on a desktop computer.

As shown in Table 1, performing adaptation either indoors
or outdoors improved accuracy, reducing word errors by
about 20% relative compared to doing no adaptation. We
found recognition was much harder outdoors than indoors,
increasing the word error rate by 45% relative. The error
rates of the indoor and outdoor adapted models were very
similar regardless of the test set. Since we found no
particular advantage to recording adaptation data outdoors,
we decided to record all adaptation data indoors.

USER STUDY
To see how well our system worked in practice, we
conducted an initial user study. Our primary aim was to
validate our design. In the study, users spoke and corrected
sentences while seated indoor and while walking outdoors.

Participants
We recruited four participants (3 males, 1 female) from the
university campus. 3 participants used the UK acoustic
model, 1 participant used the US model. Their ages ranged
from 22 to 39. Participants had no significant prior
experience using speech or touch interfaces.

Method and Setup
Participants used a Nokia N800 Internet Tablet (Figure 1).
The physical dimensions of the device (length × width ×
thickness) were 75 × 144 × 13mm. The screen had a
resolution of 800 × 480 pixels and a size of 90 × 55 mm.

For stimuli text, we used sentences from the set-aside
directory of the CSR-III corpus. These sentences were
excluded from language model training. We chose
sentences with between 8 and 16 words. Using our 5K
WSJ language model, 2.4% of words were out-of-
vocabulary and the average per-word perplexity was 18.

Participants took part in a single two-hour session.
Participants first trained the speech recognizer for 10
minutes. They then received a 5 minute introduction to the
interface, followed by 10 minutes of practice. Participants
proceeded to either the seated indoor condition or the
walking outdoor condition. In the outdoor condition,
participants walked circles around our building on a safe
pedestrian path and under constant supervision. Each
condition lasted about 30 minutes.

In both conditions, participants were presented with stimuli
sentences in a large font. When ready, participants pressed

242

a MIC ON button, read the sentence, then pressed a MIC OFF
button. After a recognition delay, the device beeped and
the participant hit a CORRECT button to enter the correction
interface. After correcting a sentence, the participant
pressed a DONE button to move to the next sentence.
Participants were told to proceed “quickly and accurately”.

Results
On average, participants completed 41 sentences indoors
(sd = 7) and 27 sentences outdoors (sd = 4). Figure 8
shows the GPS track of one participant’s outdoor trial.

We found the outdoor condition presented some challenges
for our system. Our trials took place during a period of
windy weather with an average wind speed of 13 knots,
gusting to 28 knots. This made recognition more difficult
on the windward sections of the course. In addition, one
trial took place on a sunny day and that participant had
difficulty seeing the N800’s screen on parts of the course.

Figure 8. One participant’s GPS track line around the

Cavendish Laboratory. The image is from Google Earth.

Error Rate
Word error rate (WER) was calculated as the word edit
distance between the stimuli sentence and the final sentence
divided by the number of words in the stimuli sentence.

Table 2 shows the mean error rates obtained indoors and
outdoors. The before correction error rate is the error rate
of the speech recognizer’s output. The after correction error
rate is the error rate after participants corrected the
recognition result. As shown in Table 2, the recognizer’s
error rate was considerably higher outdoors than indoors.
In both conditions, participants corrected almost all errors.

Entry Rate
Entry rate was measured in words-per-minute (WPM). We
used the standard convention defining a word as five
consecutive characters. The time duration to enter a
sentence was calculated as the time between pressing MIC
ON and pressing DONE. Table 3 shows the mean entry
rates. As expected, users were faster indoors than outdoors.

Correction Method Usage
Participants could correct errors either using the word
confusion network or the software keyboard. If participants

forget the sentence, they also could invoke a help screen
which displayed the stimuli sentence again.

Indoors, participants spent 62% of their time in the word
confusion network, 32% in the predictive software
keyboard, and 6% in help. Outdoors, participants spent 56%
of their time in the word confusion network, 33% in the
predictive software keyboard, and 11% in help.

Condition Text WER ± 95% CI

indoor before correction 16.17 ± 4.50

outdoor before correction 25.63 ± 3.13

indoor after correction 1.22 ± 1.04

outdoor after correction 2.23 ± 1.68

0 10 20 30
Table 2. Novice users’ mean word error rates (WER) and

95% confidence intervals.

Condition WPM ± 95% CI

indoor 18.36 ± 1.80

outdoor 12.83 ± 0.55

0 5 10 15 20
Table 3. Novice users’ mean entry rates in words-per-minute

(WPM) and 95% confidence intervals.

 0

 5

 10

 15

 20

 25

 30

 35

 40

Top Alt1 Alt2 Alt3 Alt4 Delete

P
ro

p
o

rt
io

n
 o

f
ti
m

e
s
 u

s
e

d
 (

%
)

Cluster row

Touch
Crossing

Figure 9. How often words in each row in the confusion
network were selected and the method used (touch or

crossing). Top is the 1-best result, Alt1-Alt4 are alternative
words (Alt1 is the top alternative), Delete is the delete button.

Word Confusion Network Usage
Figure 9 shows the overall usage of the word confusion
network. The most commonly selected row in the confusion
network was delete. When substituting words, selections
decrease in frequency as a function of how far away the
words were from the 1-best result (Alt1-Alt4 in Figure 9).
This validated our computational results which showed the
first few alternatives were the most useful for corrections.

Users most often selected single buttons via touch. When
they did select multiple buttons via a crossing gesture, they
primarily selected delete buttons. This showed aligning
delete buttons in a single row was a useful feature.

243

Out of 273 tasks, 82 had a completely correct recognition
result. Users completed 80 of these tasks without making
any unnecessary actions (such as touching a word or using
the keyboard). In 27 of the 273 tasks, the sentence could be
completely corrected using only the confusion network. In
these instances, users corrected 26 of the sentences (96%)
using only the confusion network. This shows users took
advantage of the confusion network whenever possible.

Of 416 selection actions in the confusion network, users
touched a single word 374 times (90%) and crossed
multiple words 42 times (10%). When crossing, users
selected 2.6 buttons on average. The copy words feature
(Figure 3) was only used three times.

Scrolling
Only 2% of recognition results fit on one screen. The
average width of a result was 1083 pixels (sd = 266). The
display width (minus scroll buttons) was 700 pixels. So on
average, users needed to scroll once to check their sentence.

Software Keyboard Usage
Of the 270 times users invoked the keyboard, they chose a
morphological prediction 18 times (7%). While indoors,
17% of key presses were the backspace key. While
outdoors, 25% of key presses were the backspace key.

In total, participants wrote 265 words with the keyboard.
When typing those words, participants used the typing
prediction 54% of the time. On average, participants typed
about 3 letters (mean = 3.3) before selecting a prediction.
When participants did not use prediction, the desired word
had been displayed by the system 70% of the time. In these
cases, we found on average the user only needed to type a
few additional letters (mean = 1.6) to complete their word.
This is likely why they ignored the word prediction.

EXPERT PILOT STUDY
To illustrate the potential of speech as a viable mobile text
entry method, we measured one expert user (one of the
authors) over seven sessions. The goal of the expert pilot
was to demonstrate how fast our technique could potentially
go (as done in other text entry studies, such as [15]).

Each expert session had an indoor and outdoor condition as
previously described. However, instead of a fixed time
limit, the expert instead completed a fixed number of
sentences. The expert had several years of experience
developing and using speech recognition systems. The
expert used the US acoustic model.

Results
In total, the expert completed 313 sentences indoors and
309 outdoors. Table 4 shows the recognition word error
rates and final corrected error rates obtained by our expert.

Despite relatively long recognition delays (mean = 18 s, sd
= 7 s), our expert’s text entry rates were surprisingly good
(Table 5). If we removed the time the expert spent waiting
for recognition, his writing speed over doubled. While

having no delay is not realistic, as devices and recognizers
become faster, a good amount of this gain could be realized.

Condition Text WER ± 95% CI

indoor before correction 8.46 ± 1.60

outdoor before correction 14.83 ± 2.17

indoor after correction 0.94 ± 0.37

outdoor after correction 1.52 ± 0.99

0 5 10 15
Table 4. Expert mean word error rates (WER). The 95%

confidence intervals reflect the individual’s variance.

Condition Rec delay WPM ± 95% CI

indoor actual 24.43 ± 0.70

outdoor actual 19.60 ± 0.72

indoor none 53.18 ± 1.94

outdoor none 44.79 ± 2.05

0 20 40 60

Table 5. Expert mean entry rates. The 95% confidence
intervals reflect the individual’s variance. The bottom two
rows show performance assuming no recognition delay.

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 10 20 30 40 50

W
P

M

WER (%)

y = 26.5e
-0.0159x

 R
2
=0.38

y = 22.6e
-0.0158x

 R
2
=0.50

Indoor
Outdoor

Indoor fit
Outdoor fit

Figure 10. Plot of the entry rate in words-per-minute (WPM)
and word error rate (WER) of sentences written by the expert.

As expected, walking outdoors slowed entry, but it did so
only by about 20% relative. About half of the expert’s
sentences (51%) were recognized with no errors.
Unsurprisingly, these were completed the fastest (27 WPM
indoors, 24 WPM outdoors). The trend lines in Figure 10
show how entry rate slowed as recognition errors increased.
As errors increased, the decrease in entry rate was not as
dramatic as one might expect. For example, in the 10%
word error range, entry rates dropped by only about 15% in
both conditions.

DISCUSSION

Limitations
We used a 5K vocabulary and low-perplexity sentences.
While we would have liked to test users on more difficult

244

text, we wanted a “useable” level of recognition errors. In
our opinion, there is no point testing speech correction
interfaces at really high word error rates. If there are too
many errors, it would likely be better not to use speech in
the first place. While commercial recognizers like Dragon
achieve fast and accurate recognition on difficult text on a
desktop, the same is not currently possible using a research
recognizer on a mobile device. Recognizers and devices
will undoubtedly improve, but in the meantime, we believe
we can explore the design and usability of speech interfaces
by giving users simpler recognition tasks.

Due to limited computational resources on our device, users
experienced long recognition delays (mean = 22 s, sd = 14
s). Some (pathological) utterances took up to a minute to
recognize. As devices become faster, delays will be reduced
and entry rates should improve. Still, it is worth noting that
our novice’s (corrected) entry rate of 13 WPM walking
outdoors (including these long recognition delays) was still
about as fast as the entry rates users obtained while seated
indoors using T9 predictive text after several sessions [30].

Design Implications

Review Screen
Many sentences were recognized completely correct.
Despite this, users were forced to enter the word confusion
network screen and scroll through the entire result to ensure
it was correct. It may be advantageous to first allow a
simple single screen review of the entire recognition result.

Easy Fallback
We noticed that for some utterances, the recognition result
had so some many errors as to make correction an exercise
in erasing everything and typing the entire sentence. Our
interface should better support this circumstance, allowing
users to fallback to keyboard only entry when necessary.

High Contrast
While outdoors, users sometimes found it hard to read the
screen because of glare. The user interface could benefit
from a redesign that puts more emphasis on high contrast.

More Efficient Use of Screen Real Estate
We found users sometimes had trouble with target
selection. Particularly in the word confusion network,
buttons could benefit from being larger. Given that users
made relatively few selections in the lowest rows in the
word confusion network (cf. Figure 9), we may want to
remove a row or two to provide space for larger buttons.

Improved Speech Recognition
Recognition delays after users hit the MIC OFF button
accounted for 50% of entry times. As mobile devices get
faster, these delays will be reduced significantly. This will
have a very large impact on the practical entry rates
achievable by continuous speech recognition on a mobile
device. Improvements in recognition accuracy will also
clearly help improve text entry throughput.

CONCLUSIONS
In this paper we presented Parakeet – a touch-screen system
for continuous speech recognition on mobile devices. To
our knowledge, we are the first to explore a practical
mobile continuous speech recognition system for text entry.
Our design of Parakeet took advantage of empirical and
qualitative findings in the HCI literature. In addition,
wherever possible, we adopted an engineering-driven
design process where we optimized our user interface based
on our system’s predicted behavior on empirical data.

In Parakeet, we introduced several novel user interface
enhancements. The final design of Parakeet was validated
by a user study. We had participants use our system both
seated indoors and while walking outdoors. To our
knowledge, no speech recognition text entry system has
been tested with users actually walking around. Among
other things, the study confirmed that word confusion
networks were a useful correction interface for users.
When the intended sentence was in the confusion network,
users were able to find and select it 96% of the time. We
also found that participants used the crossing feature about
10% of the time, showing that crossing was a useful
complementary feature. Last, we gave practical design
recommendations based on lessons learned in our study.

Our expert pilot study demonstrated that speech may be a
competitive mobile text entry method, particularly in an
actual mobile setting where users are moving around. Our
immediate future work is to run a full-scale experiment
validating this hypothesis.

ACKNOWLEDGMENTS
We would like to express our gratitude to the study
participants. We also thank David MacKay for his many
constructive comments and David Huggins-Daines for
support and advice on PocketSphinx. This research was in
part funded by a donation from Nokia. The following
applies to P.O.K. only: The research leading to these results
has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under
grant agreement number 220793.

REFERENCES
1. Accot, J. and Zhai, S. More than dotting the i’s –

foundations for crossing-based interfaces. Proc. CHI
2002, ACM Press (2002), 73-80.

2. Bisani, M. and Ney, H. Bootstrap estimates for
confidence intervals in ASR performance evaluation.
Proc. ICASSP 2004, IEEE Press (2004), 409-412.

3. Buxton, W. Chunking and phrasing and the design of
human-computer dialogues. Proc. IFIP World
Computer Congress 1986. IFIP (1986), 475-480.

4. Cohen, J. Embedded speech recognition applications in
mobile phones: status, trends and challenges. Proc.
ICASSP 2008, IEEE Press (2008), 5352-5355.

245

5. Crossan, A., Murray-Smith, R., Brewster, S., Kelly, J.
and Musizza, B. Gait phase effects in mobile
interaction. Ext. Abstracts CHI 2005, ACM Press
(2005), 1312-1315.

6. Darragh, J.J., Witten, I.H. and James, M.L. The
reactive keyboard: a predictive typing aid. IEEE
Computer 23, 11 (1990), 41-49.

7. Fitts, P. The information capacity in the human motor
system in controlling the amplitude in movement. J.
Experimental Psychology 47 (1954), 381-391.

8. Goodman, J., Venolia, G., Steury, K. and Parker, C.
Language modeling for soft keyboards. Proc. AAAI
2002, AAAI Press (2002), 419-424.

9. Hakkani-Tür, D., Béchet, F., Riccardi, G. and Tur, G.
Beyond ASR 1-best: using word confusion networks in
spoken language understanding. J. Computer Speech
and Language 20, 4 (2006), 495-514.

10. Hetherington, I.L. PocketSUMMIT: small footprint
continuous speech recognition. Proc. ICSLP 2007,
ISCA (2007), 1465-1468.

11. Huggins-Daines, D., Kumar, M., Chan, A., Black,
A.W., Ravishankar, M. and Rudnicky, A.I.
PocketSphinx: a free real-time continuous speech
recognition system for hand-held devices. Proc.
ICASSP 2006, IEEE Press (2006), 185-188.

12. Karat, C.M., Halverson, C., Horn, D. and Karat, J.
Patterns of entry and correction in large vocabulary
speech recognition systems. Proc. CHI 1999, ACM
Press (1999), 568-575.

13. Karlson, A.K., Bederson, B.B. and Contreras-Vidal,
J.L. Understanding one-handed use of mobile devices.
In Lumsden, J. (Ed.) Handbook of Research on User
Interface Design and Evaluation for Mobile
Technology. Idea Group (2008), 86-100.

14. Kurihara, K., Goto, M., Ogata, J. and Igarashi, T.
Speech Pen: Predictive Handwriting Based on Ambient
Multimodal Recognition. Proc. CHI 2006, ACM Press
(2006), 851-860.

15. Kristensson, P.O. and Zhai, S. Relaxing stylus typing
precision by geometric pattern matching. Proc. IUI
2005, ACM Press (2005), 151-158.

16. Kristensson, P.O. and Zhai, S. Improving word-
recognizers using an interactive lexicon with active and
passive words. Proc. IUI 2008, ACM Press (2008),
353-356.

17. Mangu, L., Brill E. and Stolcke A. Finding consensus
in speech recognition: word error minimization and
other applications of confusion networks. J. Computer
Speech and Language 14, 4 (2000), 373-400.

18. Ogata, J. and Goto, M. Speech repair: quick error
correction just by using selection operation for speech
input interfaces. Proc. ICSLP 2005, ISCA (2005), 133-
136.

19. Oulasvirta, A., Tamminen, S., Roto, V. and Kuorelahti,
J. Interaction in 4-second bursts: the fragmented nature
of attentional resources in mobile HCI. Proc. CHI
2005, ACM Press (2005), 919-927.

20. Oviatt, S. Cohen, P., Wu, L., Vergo, J., Duncan, L,
Suhm, B., Bers, J., Holzman, T., Winograd, T.,
Landay, J., Larson, J. and Ferro, D. Designing the user
interface for multimodal speech and pen-based gesture
applications: state-of-the-art systems and future
research directions. Human-Computer Interaction 15
(2000), 263-322.

21. Price, K.J., Lin, M., Feng, J., Goldman, R., Sears, A.
and Jacko, J. Motion does matter: an examination of
speech-based text entry on the move. Universal Access
in the Information Society 4 (2006), 246-257.

22. Rosenbaum, D.A. Human Motor Control. Academic
Press (1991).

23. Shneiderman, B. The limits of speech recognition.
Communications of the ACM 43, 9 (2000), 63-65.

24. Stolcke, A. Entropy-based Pruning of Backoff
Language Models. Proc. DARPA Broadcast News
Transcription and Understanding Workshop, DARPA
(1998), 270-284.

25. Suhm, B., Myers, B. and Waibel, A. Multimodal error
correction for speech user interfaces. ACM TOCHI 8, 1
(2001), 60-98.

26. Vertanen, K. Efficient computer interfaces using
continuous gestures, language models, and speech
M.Phil. thesis. University of Cambridge, United
Kingdom (2004).

27. Vertanen, K. Baseline WSJ acoustic models for HTK
and Sphinx: training recipes and recognition
experiments. Technical report, University of
Cambridge, United Kingdom (2006).

28. Vertanen, K. and Kristensson, P.O. On the benefits of
confidence visualization in speech recognition. Proc.
CHI 2008, ACM Press (2008), 1497-1500.

29. Weng, F., Stolcke, A. and Sankar, A. Efficient lattice
representation and generation. Proc. ICSLP 1999,
ICSA (1999), 1251-1254.

30. Wobbrock, J.O., Chau, D.H. and Myers, B.A. An
alternative to push, press, and tap-tap-tap: gesturing on
an isometric joystick for mobile phone text entry. Proc.
CHI 2007, ACM Press (2007), 667-676.

246

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

