
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 6574–6588

August 1–6, 2021. ©2021 Association for Computational Linguistics

6574

Accelerating Text Communication via Abbreviated Sentence Input

Jiban Adhikary1

jiban@mtu.edu
Jamie Berger2

jamieberger16@gmail.com
1Michigan Technological University, Houghton, Michigan, USA

2Washington Leadership Academy, Washington, DC, USA

Keith Vertanen1

vertanen@mtu.edu

Abstract

Typing every character in a text message may
require more time or effort than strictly neces-
sary. Skipping spaces or other characters may
be able to speed input and reduce a user’s phys-
ical input effort. This can be particularly im-
portant for people with motor impairments. In
a large crowdsourced study, we found workers
frequently abbreviated text by omitting mid-
word vowels. We designed a recognizer opti-
mized for expanding noisy abbreviated input
where users often omit spaces and mid-word
vowels. We show using neural language mod-
els for selecting conversational-style training
text and for rescoring the recognizer’s n-best
sentences improved accuracy. On noisy touch-
screen data collected from hundreds of users,
we found accurate abbreviated input was pos-
sible even if a third of characters was omitted.
Finally, in a study where users had to dwell for
a second on each key, sentence abbreviated in-
put was competitive with a conventional key-
board with word predictions. After practice,
users wrote abbreviated sentences at 9.6 words-
per-minute versus word input at 9.9 words-per-
minute.

1 Introduction

Experienced desktop and touchscreen typists can
often achieve fast and accurate text input by simply
typing all the characters in their desired text. How-
ever, for some users, such quick and precise input is
difficult due to a motor disability. Such users may
use a virtual touchscreen keyboard, but their touch
locations may be slow and inaccurate, e.g. peo-
ple with Cerebral palsy. Other users may need to
click keys by pointing at them with a head- or eye-
tracker and dwelling for a fixed time, e.g. people
with amyotrophic lateral sclerosis (ALS).

When a person’s typing is slow or inaccurate,
word completions may provide more efficient in-
put. Word completions predict the most probable

words based on the current typed prefix. However,
monitoring predictions carries a cognitive cost and
may not always improve performance (Trnka et al.,
2009). Further, monitoring predictions can be diffi-
cult without visual feedback. Eyes-free text input
can be slow for users who are visually-impaired
(Nicolau et al., 2019), and even slower for users
who are motor- and visually-impaired (Nel et al.,
2019). Finally, eyes-free text input may be needed
in future augmented reality (AR) interfaces where
visual feedback is limited or non-existent (e.g. due
to lighting or device limitations). In audio-only
AR, it is still possible to type on an invisible virtual
keyboard (Vertanen et al., 2013; Zhu et al., 2018).

All these cases motivate our interest in explor-
ing alternatives to conventional word completion.
Here we investigate accelerating input by allowing
users to skip typing spaces and mid-word vow-
els. We decided to abbreviate in this manner based
on past results on touchscreen text input without
spaces (Vertanen et al., 2015, 2018), and a study
we present here in which 200 people abbreviated
email messages. Our interaction approach of abbre-
viation is similar to features in commercial assis-
tive interfaces (e.g. Grid 3, NuVoice, Lightwriter).
Our whole utterance prediction approach is simi-
lar to features in touchscreen phone keyboards and
in commercial assistive interfaces (e.g. dwell-free
sentence input in Tobii Communicator 5).

We modified a probabilistic recognizer to accu-
rately expand abbreviated input by 1) improving
our language models by selecting well-matched
training data via a neural network, 2) modifying
the search to model the insertion of mid-word vow-
els, and 3) adding a neural language model to the
search. We validate our method in computational
experiments on over six thousand sentences typed
on touchscreen devices. We found that even when
28% of letters were omitted, we recognized sen-
tences with no errors 70% of the time. Selecting

6575

from the top three sentences, user could obtain their
intended sentence 80% of the time.

Finally, we compare word completion and abbre-
viated sentence input in a user study. In this study,
users had to dwell for one second to trigger a tap.
We found sentence input was slightly slower than
using word completions, but still saved substantial
time compared to typing all the characters. Users
obtained their desired sentence 68% of the time.

2 Related Work

Abbreviated input. Demasco and McCoy (1992)
investigated expanding uninflected words (e.g. “ap-
ple eat john”) into syntactic sentences (e.g. “the
apple is eaten by john”). Gregory et al. (2006)
created abbreviation codes (e.g. “rmb” = “remem-
ber”). Users selected words from a menu or by
typing a code’s letters. Typing codes was the most
efficient. Pini et al. (2010) detected abbreviated
phrases using a Support Vector Machine and ex-
panded them via a Hidden Markov Model (HMM).
Their detector and expander were 90% and 95%
accurate respectively. Users decreased keystrokes
and input time by 32% and 26% respectively.

Shieber and Nelken (2007) allowed users to drop
non-initial vowels and repeated consonants. This
deleted 26% of the total characters. Using an n-
gram word language model and a spelling trans-
ducer for each word, they expanded abbreviated
text at an error rate of 3.3%. Our work differs
in that we: 1) removed spaces between words, 2)
did not remove consecutive consonants, 3) used a
character language model with no fixed vocabulary.

Tanaka-Ishii et al. (2001) explored Japanese text
input with digits. They used an HMM to expand
a sequence of digits into characters. Users saved
35% of keystrokes typing on a mobile phone. Han
et al. (2009) also used an HMM to expand abbre-
viations learned from a corpus of Java code. Their
approach did not require memorizing abbreviations
and provided incremental feedback while typing.

In two studies with 31 users, Willis et al. (2002,
2005) identified common abbreviation behaviors
such as vowel deletion, phonetic replacement, and
word truncation. They did not release their data
and it was on a relatively small number of people.
Based on their work, we conducted an abbreviation
study with 200 users and also share our data.

Data selection. Mismatch between the training
and target text domains can lead to sub-optimal
language models. A variety of methods have been

developed to address this problem. Lin et al. (1997),
Gao et al. (2002), and Yasuda et al. (2008) used lan-
guage modeling and in-domain perplexity to select
training data. In this approach, a language model is
trained on a small in-domain dataset. Training in-
stances from an out-of-domain dataset are selected
if they are below some perplexity threshold.

Other work has investigated data selection using
cross-entropy or cross-entry difference between in-
and out-of-domain datasets (Axelrod et al., 2011;
Moore and Lewis, 2010; Schwenk et al., 2012;
Rousseau, 2013; Mansour et al., 2011; Vertanen
and Kristensson, 2011b). In this approach, an in-
domain and out-of-domain language models are
first trained. Sentences are selected based on a
cross-entropy threshold or cross entropy difference
calculated from the two language models.

Hildebrand et al. (2005) and Lü et al. (2007) ap-
plied information retrieval based techniques to se-
lect data. Other method include selecting based on
infrequent n-gram occurrences (Gascó et al., 2012;
Parcheta et al., 2018), or Levenshtein distance and
word vectors (Chinea-Rios et al., 2018).

Duh et al. (2013) employed the data selection
method of Axelrod et al. (2011), which builds upon
Moore and Lewis (2010)’s approach. The main dis-
tinction is that they used neural language models
for selection rather than n-gram models. Chen and
Huang (2016), Peris et al. (2017), and Chen et al.
(2016) selected based on convolutional and bidirec-
tional long short-term memory neural networks.

Bidirectional neural models like BERT (Devlin
et al., 2019) has proven effective in many natural
language tasks. Ma et al. (2019) used BERT for
domain-discriminative data selection. Hur et al.
(2020) used BERT for domain adaptation and in-
stance selection for disease classification. Our se-
lection method is similar to these methods but fo-
cuses on selecting conversational-style sentences.

Decoding noisy input. Text entry interfaces of-
ten use a probabilistic decoder to infer a user’s text
from time sequence data (Vertanen et al., 2015;
Kristensson and Zhai, 2004; Zhai et al., 2002; Zhai
and Kristensson, 2008). Typically, a keyboard like-
lihood model and a language model prior are used
to infer a user’s text from input with incorrect, miss-
ing, or extra characters. To date, these approaches
have mostly used n-gram language models.

Ghosh and Kristensson (2017) corrected typos
in tweets to a low character error rate of 2.4% by
using a character convolutional neural network, an

6576

encoder with gated recurrent units, and a decoder
with attention. The twitter typo data contained se-
quences with a similar number of characters to the
target. In our work, we show acceptable character
error rate can be achieved on input not only with
typos, but also with missing spaces and mid-word
vowels. We show the advantage of using a recurrent
neural network language model (RNNLM) directly
in the decoder’s search or to rescore hypotheses.

3 Free-form Abbreviation Study

To better understand how people do free-form ab-
breviation, we conducted a study on Amazon Me-
chanical Turk. As a pilot, we had 26 workers abbre-
viate an email from the Enron mobile data set (Ver-
tanen and Kristensson, 2011a). We designed our
instructions based on Willis et al. (2005). Workers
abbreviated the same email three times. Each time
the worker was asked to abbreviate in three ways:
heavily, as little as possible, or as they saw fit.

In our pilot, we found workers abbreviated simi-
larly regardless of instructions. Thus, we designed
a single set of instructions for our main study that
asked workers to imagine they were using artifi-
cially intelligent (AI) software that was good at
guessing their intended text from an abbreviated
form. They were told to shorten words by remov-
ing or changing letters, but they should avoid short-
ening words that might be hard for the system to
guess and that they should not omit words entirely.
See the appendix for our instructions. Our supple-
mentary data contains all the data from the study.

We recruited 200 workers who each abbreviated
ten emails. In our analysis, we used 1,308 of the
2,000 emails. We filtered out emails that did not
have the same number of words as their original
emails. This filtering helped us to align the sen-
tences by word. Punctuation was removed except
apostrophes and at signs. We lowercased the text.

3.1 Abbreviation Behavior

We found 90% of abbreviated words were an in-
order subsets of their full spelling. On average,
21% of a word’s letters were deleted. Of these,
16% were consonants and 42% were vowels. In the
set of six common letters in English, etoain,
consonants were less likely to be deleted than vow-
els. Surprisingly, the six least common letters,
zqxjvk were often deleted. Considering let-
ter position in words, 14% of first letters, 35% of
last letters, and 90% of middle letters were deleted.

●●

●●●●

●

●●●
●●●●

●●●●●

●●●●●

●●

●

●●●●●●

●●●●

●●●●

●●

●●

●

●
●

●●●

●●

●●●

●●●●

●

●●●●

●●●
●●●●●

●●●●

●

●

●
●●●●

●

●●●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●●

●

●●

●

●

●

●●●

●

●●●●●●

●

●●● ●●●

●

●

●

●●

●
●

●●●

●

●●●●

●●

●●

●

●●●

●

●●

●●●●

●

●

●

●

● ●●

●●●

●

●

●

●

●

●

●●

●●

●

●●●●●

●

●

●●●● ●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●●●●

●●

●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●●

●●●●●●

●

●

●

●

●●

●

●

●

●●●●●●

●●●

●

●●

●

●

●

●●

●●

●

●

●●●●●

●●

●●●●●●

●

●●●

●

●

●

●
●

●

●●●

●

●●●●●●●●●●

●

●●

●●

●

●●

●

●

●

●●

●

●

●●
●●●●●●●●●●●●

●

●

●

●●

●●

●●●●●●●●●●

●

●

●●●

●

●●●●

●

●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●0

20

40

60

80

0 20 40 60

Compression of input (%)

E
rr

o
r

ra
te

 o
f

e
x
p

a
n

s
io

n
 (

C
E

R
 %

)

Figure 1: Error rate of automatic expansion with in-
creasing abbreviation of the input.

Our study confirmed some of our initial beliefs
about how people would do free-form abbreviation.
We found people deleted vowels more frequently
than consonants and people usually retained the
first letter of words. Other aspects we found sur-
prising such as the frequent deletion of uncommon
letters. The percentage of middle letters deleted
was high. One reason for this was some workers
persistently only used the first letter of each word.

3.2 Initial Automatic Expansion Experiment

We selected 564 passages where each word was
an in-order subset of the full word. We imple-
mented a search that proposed inserting all char-
acters at all positions in words in workers’ input.
The search was guided by the language models de-
scribed in Vertanen et al. (2015). We used beam
search to keep the search tractable. See the ap-
pendix for example input and the expanded output.

We measured accuracy using character error rate
(CER). CER is the number of insertions, substi-
tutions, and deletions required to transform the
expanded text into the original text (typically multi-
plied by 100). As shown in Figure 1, the expansion
had a CER of less than 5% for compression of
up to 30%. Beyond that, much of the input was
only the first letter of each word and our algorithm
simply imagined probable text consistent with the
provided letters. We think these results are promis-
ing given our search simply proposed the insertion
of all characters at all positions.

4 Conversational Language Modeling

We think abbreviated input may most benefit users
with slow input. From this point on, we focus on
optimizing our system for use by Augmentative and
Alternative Communication (AAC) users. AAC
users may not be able to speak due to a condition

6577

such as ALS. AAC users slow input rate make
taking part in conversations difficult (Arnott et al.,
1992). Sentence abbreviation may be particularly
useful for short phrases with predictable language.

Our search-based approach to abbreviation ex-
pansion relies crucially on a well-trained language
model. For a language model to work well it needs
to be trained on data that is suited to the target do-
main. Ideally we would train our language models
on large amounts of conversational communica-
tions written by AAC users. For privacy and ethi-
cal reasons, it is difficult to find large amounts of
such data. Therefore, in this section, we explore se-
lecting training data from an out-of-domain dataset
using a small amount of in-domain AAC-like data.

4.1 Selecting Training Data
As our in-domain set, we used 29 K words of AAC-
like crowdsourced messages (Vertanen and Kris-
tensson, 2011b). For our out-of-domain training
set, we used one billion words of web text from
Common Crawl1. We only kept sentences consist-
ing of A–Z, apostrophes, spaces, commas, periods,
question marks, and exclamation point. We com-
pared three ways to select training sentences:

Random selection. We randomly selected sen-
tences until we reached 100 million characters.

Cross entropy difference selection. Following
Moore and Lewis (2010), we trained an in-domain
4-gram word language model on our AAC-like data,
and an out-of-domain 4-gram model on a random
subset of web text (disjoint from the training set).
We calculated the cross-entropy difference of train-
ing sentences using the in- and out-of-domain mod-
els. We selected the highest scoring sentences until
we reached 100 million characters.

BERT selection. BERT is a language represen-
tation model built using self-attentive transformers
(Devlin et al., 2019). We took the in- and out-of-
domain data from the previous step and labeled
each sentence based on its set. We then trained a
binary classifier using bert-base-uncased2.
We ran our classifier on each sentence in the train-
ing set yielding the probability of a sentence be-
longing to the in-domain set. We selected the top
sentences until we reached 100 million characters.

4.2 Comparison of Selection Methods
As shown in Table 1, random sentences from Com-
mon Crawl averaged 30 words. The cross-entropy

1https://commoncrawl.org/
2https://github.com/google-research/bert/

Method Words OOV Enron Daily Enron
sent. (%) ppl ppl CER

Random 29.8 1.21 4.81 3.31 7.04
CE diff. 14.3 0.32 4.57 3.11 6.00
BERT 11.1 0.39 4.53 3.05 5.75

Table 1: Impact of selection method on training sen-
tences and performance of letter language models.

difference and BERT methods selected shorter sen-
tences of 14 and 11 words respectively. This is
likely good given our goal of supporting short, con-
versational messages. For comparison, sentences
averaged 13 words in the in-domain AAC set and
10 words in DailyDialog (Li et al., 2017). DailyDi-
alog consists of two-sided everyday dialogues.

We calculated the out-of-vocabulary (OOV) rate
with respect to a vocabulary of 100 K words. Our
randomly selected sentences had a much higher
1.2% OOV rate compared to cross-entropy and
BERT selected data at 0.3% and 0.4% respectively
(Table 1). Again this suits our purpose as we sus-
pect abbreviated input is best suited for sentences
without uncommon words. For comparison, the
OOV rates of DailyDialog and our AAC-like set
were both low at 0.2%. See the appendix for sam-
ples of sentences selected by each method.

We trained 12-gram character language models
with Witten-Bell smoothing on each 100 million
character training set. We trained without count
cutoffs and did not prune the models. The binary
BerkeleyLM (Pauls and Klein, 2011) size of the
random, cross-entropy difference, and BERT mod-
els were 1.7 GB, 1.3 GB, and 1.2 GB respectively.

We evaluated these character language models
on the Enron mobile (Vertanen and Kristensson,
2011a) and DailyDialog (Li et al., 2017) datasets.
Before evaluation, we split each dialog turn in
DailyDialog into single sentences and randomized
their order. We calculated the average per-character
perplexity of these two datasets. As shown in Table
1, the cross-entropy and BERT models had perplex-
ities around 6% lower than the random model with
the BERT model having the lowest perplexity.

We also compared the recognition accuracy of
the three language models using the recognizer and
data to be described in the next section. As shown
in Table 1 (right column), these perplexities reduc-
tions did translate into improvements in recognition
accuracy on touchscreen input where spaces and

6578

50% of mid-word vowels were removed.

5 Recognizing Noisy Abbreviated Input

We now describe how we used our optimized lan-
guage models to recognize noisy abbreviated input.

5.1 Decoder Details and Improvements

We extended the VelociTap touchscreen keyboard
decoder (Vertanen et al., 2015). VelociTap searches
for the most likely text given a sequence of 2D taps.
Each tap has a likelihood under a 2D Gaussians
centered at each key. Taps can be deleted with-
out generating a character by incurring a deletion
penalty. Adding characters to a hypothesis incur
penalties based on a character language model.

The decoder can insert characters without con-
suming a tap. A general insertion penalty allows
all possibles characters to be inserted. The decoder
also has separate space and apostrophe insertion
penalties. We extend this further by adding a vowel
insertion penalty for inserting the vowels: a, e, i,
o, u. However, this penalty is only used if the prior
character is not a space. This models that vowels
should not be skipped at the start of words.

The search is performed in parallel, with differ-
ent threads extending partial hypotheses. When
a hypothesis consumes all taps, it is added to an
n-best list. To keep the search tractable, a config-
urable beam controls whether partial hypotheses
are pruned. A wider beam searches more thor-
oughly, but at the cost of more time and memory.

To date, VelociTap has only used n-gram lan-
guage models. We extend the decoder to use a re-
current neural network language model (RNNLM)
either as a replacement for the character n-gram
during search, or to rescore the n-best list. When
used for rescoring, we compute the log probability
of each sentence under the RNNLM. We multiply
this probability by an RNNLM scale factor and add
the result to a hypothesis’ log probability.

We trained an RNNLM on the BERT-selected
training data. After a hyperparameter search, we
settled on 512 LSTM units, a character embedding
size of 64, two hidden layers, a learning rate of
0.001, and a dropout probability of 0.5. We trained
using the Adam optimizer. On the Enron Mobile
and DailyDialog test sets, our RNNLM had a per-
plexity of 4.50 and 2.64 respectively.

To allow efficient hypothesis extension during
RNNLM-based search, we augmented our partial
hypotheses to track the state of the neural network.

However, as we will see, RNNLM search required
substantial memory and computation time. While
we experimented with using a GPU for RNNLM
queries, we found parallel CPU search was faster.

5.2 Touchscreen Data and Simulation Details
We tested our improvements on noisy, abbreviated,
touchscreen keyboard input. We wanted noisy in-
put to ensure our system was robust to mistakes
AAC users may make when typing (e.g. when us-
ing a mouth stick or an eye-tracker). We created
a test and development set using data collected on
touchscreen phones (Vertanen et al., 2015, 2013)
and watches (Vertanen et al., 2018, 2019). We lim-
ited our data to sentences from the Enron Mobile
set. We concatenated taps to create single sentence
sequences without spaces. We removed sentences
where the number of taps did not match the length
of its reference. This resulted in a test and develop-
ment set of 6,631 and 731 sentences respectively.

We played back taps to our decoder, deleting
mid-word vowels with a given vowel drop proba-
bility. We tested drop probabilities of 0.5 and 1.0.
In our test set, 17.7% of characters were spaces.
With a drop probability of 0.5, 27.9% of charac-
ters (including spaces) were deleted. If all mid-
word vowels were dropped, 38.2% of characters
were saved. For the n-gram search and RNNLM
rescoring setups and two drop probabilities, we
tuned decoder parameters to minimize CER on the
development set. Tuning used a random restart
hill-climbing approach. We tuned each of the four
setups for 600 CPU hours. Due to the computa-
tional costs, we used the parameters found for the
n-gram search for the RNNLM search.

We report the character error rate (CER), as well
as word error rate (WER), and sentence error rate
(SER) on our test set. We also report the Top-5 SER
which is the lowest SER of the top five hypotheses.
We searched in parallel using 24 threads on a dual
Xeon E5-2697 v2 server. This large number of
threads mainly sped up the RNNLM search.

5.3 Recognition Results
As shown in Table 2, using the RNNLM in the
search instead of the n-gram model reduced error
rates by 23% and 12% relative for a vowel drop
probability of 0.5 and 1.0 respectively. This how-
ever came at a much higher cost with decoding
taking much longer and requiring more memory.
Using the n-gram model for search and rescoring
with the RNNLM resulted in similar error rates

6579

Decoder Drop CER WER SER Top-5 SER Decode Memory
search prob. (%) (%) (%) (%) time (s) (GB)

n-gram search 0.5 5.7 ± 0.3 12.4 ± 0.5 35.1 ± 1.1 22.0 0.21 40.7
+ RNNLM rescore 0.5 4.4 ± 0.2 9.5 ± 0.5 27.7 ± 1.1 16.5 0.34 52.1

RNNLM search 0.5 4.3 ± 0.2 9.3 ± 0.5 27.6 ± 1.1 15.4 24.05 353.2

n-gram search 1.0 9.5 ± 0.4 19.0 ± 0.7 45.5 ± 1.2 30.3 0.03 41.4
+ RNNLM rescore 1.0 8.0 ± 0.3 15.5 ± 0.6 38.5 ± 1.2 24.2 0.09 52.9

RNNLM search 1.0 8.2 ± 0.3 15.8 ± 0.6 41.5 ± 1.2 26.3 1.09 52.4

Table 2: Error rates and decoder performance using different search methods and vowel drop probabilities.
± values denote sentence-wise 95% bootstrap confidence intervals (Bisani and Ney, 2004).

Figure 2: The word (left) and sentence (right) key-
board modes from our user study. The circle is centered
on the user’s touch location with a green arc showing
progress towards the one second dwell time.

to searching with the RNNLM, but only caused
modest increases in decode time and memory.

Dropping half of vowels, we recognized the
correct sentence 72% of the time using RNNLM
rescoring. If we assume an interface allowing selec-
tion from the top five results, this increased to 85%.
Dropping all vowels was harder; we recognized the
correct sentence only 59% of the time. Providing
the top five sentences increased this to 74%.

Interestingly, our vowel drop probability 1.0 se-
tups were faster. We investigated this by varying
the tuned beams, measuring CER on the develop-
ment set. We found for drop 0.5, a narrower beam
increased CER while a wider beam provided no
gain. For drop 1.0, a narrower beam also increased
CER, but even a modestly wider beam increased
CER slightly (3% relative). The tuned penalty for
vowel insertion was small (0.8 probability). We
observed in sentences with errors at a narrow beam,
a wider beam sometimes resulted in more inserted
vowels. This may have allowed more probable text,
but ultimately a higher CER. This suggests we may
need a more nuanced model of how users abbrevi-
ate, e.g. by penalizing contiguous vowel insertions.

6 User Study

Thus far, we tested abbreviated sentence input only
in offline experiments. To see if our method offers
competitive performance in practice, we conducted
a user study using a touchscreen web application.

6.1 Design
We designed a touchscreen keyboard that runs in a
mobile web browser. The keyboard has two modes:

Word — This mode has the keys A–Z, apostro-
phe, spacebar, and backspace (Figure 2, left). The
keyboard has three prediction slots above the key-
board. The left slot shows the exact letters typed.
The center and the right slots show predictions
based on a user’s taps and any previous text. Pre-
dictions and recognition occur after each key press.
Pressing the spacebar normally selects the left slot.
Similar to the iPhone keyboard, if a user’s input is
noisy and we predict an auto-correction with high
probability, we highlight this slot instead. In this
case, pressing spacebar selects the auto-correction.
A done button signals completion of a sentence.

Sentence — This mode is similar but has no
spacebar or suggestion slots (Figure 2, right). Input
is recognized only after the done button is pressed.

To simulate users with a slow input rate, users
had to dwell on a key for one second to click it.
We chose one second because this is a common de-
fault setting in dwell-based eye typing, for example,
1.2 seconds in Tobii Communicator. We display
a progress circle around a user’s finger location
showing the dwell time. After a click, the keyboard
border flashes and the nearest key is added to the
text area above the keyboard.

Due to memory and computation requirements,
we ran our decoder on a server at our university.
The keyboard client makes requests to the server
to recognize input. In word mode, at the start of

6580

Metric WORD SENTENCE Statistical test
Entry rate (wpm) 9.9 ± 1.5 [6.6, 12.4] 9.0 ± 1.5 [5.7, 11.5] t(27) = -3.92, r = 0.60, p < 0.001
Error rate (CER %) 0.3 ± 0.5 [0.0, 2.5] 7.2 ± 5.4 [1.0, 23.6] t(27) = 6.72, r = 0.79, p < 0.001

Table 3: User performance in each condition in our user study. Results formatted as: mean ± SD [min, max].

●●

0

3

6

9

12

15

Word Sentence

E
n
tr

y
 r

a
te

 (
w

p
m

)

●

●

●

0

2

4

6

8

10

12

Word Sentence

E
rr

o
r

ra
te

 (
C

E
R

 %
)

Figure 3: Entry and error rate in our user study.

each key press, we request predictions for the key-
board slots. In sentence mode, we request sentence
recognition at the start of pressing the done button.
By making the server request at the start of a key
press, we effectively eliminated the need to wait
for predictions. The average round trip time for re-
quests in our user study was 0.41 s (sd 0.21) in the
word mode and 0.58 s (sd 0.29) in sentence mode.

6.2 Procedure

We recruited 28 Amazon Mechanical Turk workers.
The study took 30–40 minutes. Workers were paid
$10. We also offered a $5 bonus for the fastest 10%
of workers in each condition subject to having a
CER below 5%. This was a within-subject experi-
ment with two counterbalanced conditions: WORD

and SENTENCE. The conditions used the word and
sentence mode of the keyboard respectively.

Workers typed 26 phrases in each condition. The
first two were practice phrases which we did not
analyze. Workers wrote phrases written by people
with ALS for voice banking purposes (Costello,
2014). We used phrases with 3–6 words (1,182
total phrases). Workers received a random set of
phrases and never wrote the same phrase twice.

6.3 Results

Table 3 and Figure 3 show results and statistical
tests. We calculated entry rate in words-per-minute
(wpm). We considered a word to be five characters
including space. We measured the entry time from
a worker’s first tap until they finished dwelling on
the done button. The entry rate in WORD was faster
at 9.9 wpm versus SENTENCE at 9.0 wpm. This

●
● ●

● ●

●

● ●

●

●
● ●

0

2

4

6

8

10

1 2 3 4 5 6

Sentence

Word

E
n

tr
y
 r

a
te

 (
w

p
m

)

Phrase block

Figure 4: Entry rates for each block of four phrases.

difference was significant (Table 3).
As shown in Figure 4, participants started out

slower in SENTENCE compared to WORD, but the
entry rate gap closed as they wrote more phrases.
We averaged performance in the first eight and
last eight phrases. In WORD, the entry rate was
9.7 wpm in the first set and 9.9 wpm in the last
set. In SENTENCE, the entry rate was 8.6 wpm in
the first set and 9.6 wpm in the last set. This is
promising, as perhaps with more practice, sentence
abbreviation might achieve comparable speed but
without requiring monitoring of word predictions.

Participants were less accurate in SENTENCE

with a CER of 7.2% versus 0.3% in WORD. This
difference was significant (Table 3). Participants
obtained a completely correct phrase 97% of the
time in WORD, but only 68% in SENTENCE. We
think the lower accuracy in SENTENCE was mostly
due to some users abbreviating phrases too aggres-
sively. In phrases recognized completely correctly,
the compression rate was 35%. In phrases with
recognition errors, the compression rate was 43%.

We classified phrases in SENTENCE according
to their input length versus the reference length mi-
nus spaces and mid-word vowels. 252 phrases had
the correct length, 162 were longer, and 258 were
shorter. These sets correspond to phrases that were
likely correctly abbreviated, under-abbreviated,
and over-abbreviated. The error rates of these sets
were 3.2%, 2.1%, and 14.0% respectively. We
found five workers over-abbreviated 20 or more
phrases. Removing these workers lowered the over-
all CER to 5.7%. While not as accurate as word
input, sentence input did have acceptable accuracy

6581

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

7

9

11

●

Sentence

Word

0 5 10 15 20
Error rate (CER %)

E
n

tr
y
 r

a
te

 (
w

p
m

)

Figure 5: Participants’ entry and error rate in each con-
dition of the user study.

when users abbreviated as instructed.
Individual user performance was variable (Fig-

ure 5). 16 participants achieved 0% CER in WORD

and all but two had a CER below 1%. While in
SENTENCE, no participant achieved 0% CER and
five participants had a high CER of over 10%.

Using backspace, participants could fix incorrect
letters or misrecognized words. The number of
backspaces per final output character was low at
0.02 in both conditions. Thus, it appears partici-
pants precisely targeted keys, likely as a result of
the slow input induced by the dwell time.

7 Discussion

We set out to show we could accelerated the writ-
ing of short and reasonably predictable phrases by
combining sentence-at-a-time recognition with ag-
gressive abbreviation. In our final user study, we
found our method did not quite beat a conventional
keyboard with word predictions. However, users in
our study likely had substantial experience doing
word-at-a-time input on their phones. It appears
users got faster at abbreviated sentence input even
during the brief study session. By the last eight
phrases, users were only 3% relative slower using
sentence abbreviated input compared to word-at-
a-time input with word completions. When users
provided abbreviated input consisting of all the cor-
rect letters except mid-word vowels, 90% of these
phrases were expanded correctly.

We observed the abbreviation behaviour of a
large number of non-AAC users and designed a
system supporting the most common behaviours.
While we could have tried to learn abbreviation
behaviors from actual AAC user data, this presents
a number of issues. First, actual text from AAC
users is difficult to obtain for ethical and privacy
reasons. While it may be possible to obtain such
text via donations from AAC users and from online

sources, such sources lack visibility into how the
user actually produced the text (e.g. did they use
word completions?). Further, the propensity to ab-
breviate may be influenced by the particular AAC
interface used. Second, even if we could source
AAC abbreviated text, we would have no reliable
way to determine the unabbreviated text. We could
have asked AAC users to complete our abbrevia-
tion study, but this would have introduced more
noise (incorrect key presses) that would have com-
plicated our first study’s goal of discovering natural
abbreviation behaviors. It would have also limited
the number of people we learned behaviors from.
In this phase our goal was to discover what letters
humans think are the most information carrying
in a passage of text. While we suspect abbrevia-
tion strategies of AAC users would be similar, this
would benefit from validation with AAC users.

We tested our method on touchscreen data
recorded in previous studies on phones and
watches, and in a web-based crowdsourced user
study. We think our method mainly would benefit
users who have a slow input rate; fast typists may
only be slowed by the cognitive overheads of de-
ciding what letters to omit or by disrupting their
muscle memory for typing familiar words. This led
us to limiting the input rate in our study by requir-
ing users dwell for one second. While this study
allowed us to confirm our abbreviation method
is competitive with a conventional keyboard with
word predictions, this needs validation with users
with actual input rate limits. AAC user interac-
tion may feature more imprecise key presses, more
accidental key presses, and may introduce com-
plications related to attending to word predictions
(e.g. the “midas touch” problem in eye tracking).
Further, we only tested one input rate, it is possible
our method may be better or worse at different in-
put speeds. We think our approach may also offer
advantages for eyes-free text input, but this also
needs comparison against conventional eyes-free
input approaches (e.g. iPhone’s VoiceOver feature).

We investigated abbreviation by omitting mid-
word vowels. We did not investigate other forms
of abbreviation such as phonetic replacement
(e.g. “you”→ ”u”) or removal of consonants. Our
model may benefit from more sophisticated model-
ing on how and when vowels are inserted (e.g. pe-
nalizing repeated vowel insertions). Ideally im-
proved models would be based on data collected by
users engaged in actual abbreviated input. As our

6582

results show, correctly inferring the intended sen-
tences was challenging even when we asked users
to obey a few simple behaviours, namely remov-
ing spaces and mid-word vowels. While an ideal
system would support a wide-range of abbreviation
behaviors and even adapt to individuals, we suspect
this may be challenging given our current lack of
training data on this task.

In our initial study, participants abbreviated
email text that was displayed visually. An alter-
native approach would be to play audio of the text.
While this might be a more realistic abbreviation
task, it also presents practical challenges to partici-
pants such as remembering the text and spelling any
difficult words. Perhaps an even more externally
valid approach would be to have workers compose
novel abbreviated sentences. This would require
another step to obtain the unabbreviated compo-
sitions (Vertanen and Kristensson, 2014; Gaines
et al., 2021). Given we now have a competent ini-
tial system, it would be interesting to undertake
such a data collection effort.

Our results suggest a simple correction interface
based on selecting from the top sentences would
often, but not always work. Designing an efficient
and easy-to-use interface for correcting a few words
within such sentence results would be interesting
future work. This might be especially challenging
to design for users with diverse motor abilities.

We used language models trained on only 100 M
characters of text. While this allowed us to com-
pare the efficacy of the language model types and
decoder configurations, substantially more training
data is available along with neural architectures
that scale to large training sets, e.g. GPT-2 (Rad-
ford et al., 2019). We suspect further recognition
accuracy gains are possible for abbreviated, noisy
input by incorporating such models. Further, we
could likely obtain additional improvements from
the n-gram model by training on more data and then
pruning the model to reduce its size. We avoided
doing this in this work to fairly compare the n-
gram and RNN language models when trained on
the same amount of text.

Our language model training data was drawn
from Common Crawl. We used a corpus of AAC-
like crowdsourced messages to select training sen-
tences from Common Crawl. Other sources of
training data such as Twitter or Reddit are likely
more conversational in style. It would be interest-
ing to investigate whether data selecting from a

more targeted large-scale training source provides
additional improvements in language modeling.

We did not specifically investigate how our
method would support text containing difficult
words such as acronyms or proper names. Users
can often anticipate and alter their input behavior
to avoid auto-correct errors, e.g. by force (Weir
et al., 2014), by long pressing a key (Vertanen
et al., 2019), or by switching to a precise input
mode (Dudley et al., 2018). Similarly, our abbre-
viated input method needs a way to specify words
that should not be expanded or auto-corrected.

At the onset, we did not know that our proposed
abbreviation technique would be competitive to
conventional word completion. The results from
our user study tell us we need to make further im-
provements to our recognition, better train users to
abbreviate in supported ways, and conduct a longi-
tudinal evaluation. Further, testing an abbreviated
input prototype with AAC users will undoubtedly
lead to new insights. This paper is a first step in
producing a viable prototype for testing with users
with rate-limited input abilities.

8 Conclusion

We explored accelerating text communication by
abbreviated sentence input. We conducted a
user study to learn how users abbreviate. We
showed the efficacy of a neural classifier to select
conversational-style training instances from a large
text corpus. We found that dropping spaces and
mid-word vowels can provide compression of sen-
tences from 28% to 38%. Such abbreviated and
noisy input can often be expanded correctly 59%
to 72% of the time. We also showed how the accu-
racy of a statistical virtual keyboard decoder can
be improved by using a neural language model to
re-rank the top recognition results. Finally, after
practice, users wrote only slightly slower using sen-
tence abbreviated input at 9.6 words-per-minute
compared to a conventional keyboard with word
predictions at 9.9 words-per-minute. If a phrase
was abbreviated by removing spaces and mid-word
vowels, our system expanded the abbreviated input
to the intended phrase 90% of the time.

Acknowledgments

This material is based upon work supported by the
NSF under Grant No. IIS-1750193.

6583

References
John L. Arnott, Alan F. Newell, and Norman Alm.

1992. Prediction and Conversational Momentum in
an Augmentative Communication System. Commu-
nications of the ACM, 35(5):46–57.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.
2011. Domain Adaptation via Pseudo In-Domain
Data Selection. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 355–362, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

M. Bisani and H. Ney. 2004. Bootstrap Estimates for
Confidence Intervals in ASR Performance Evalua-
tion. Proceedings of the IEEE Conference on Acous-
tics, Speech, and Signal Processing, pages 409–411.

Boxing Chen and Fei Huang. 2016. Semi-supervised
Convolutional Networks for Translation Adaptation
with Tiny Amount of In-domain Data. In Proceed-
ings of The 20th SIGNLL Conference on Compu-
tational Natural Language Learning, pages 314–
323, Berlin, Germany. Association for Computa-
tional Linguistics.

Boxing Chen, Roland Kuhn, George Foster, Colin
Cherry, and Fei Huang. 2016. Bilingual Methods
for Adaptive Training Data Selection for Machine
Translation. In Proceedings of the Association for
Machine Translation in the Americas, pages 93–103.

Mara Chinea-Rios, Germán Sanchis-Trilles, and Fran-
cisco Casacuberta. 2018. Creating the Best Devel-
opment Corpus for Statistical Machine Translation
Systems. In Proceedings of the 21st Annual Confer-
ence of the European Association for Machine Trans-
lation, pages 99–108. European Association for Ma-
chine Translation.

John M. Costello. 2014. Message banking, voice bank-
ing and legacy messages. Boston Children’s Hospi-
tal, Boston, MA.

Patrick W. Demasco and Kathleen F. McCoy. 1992.
Generating Text from Compressed Input: An Intelli-
gent Interface for People with Severe Motor Impair-
ments. Communications of the ACM, 35(5):68–78.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

John J. Dudley, Keith Vertanen, and Per Ola Kristens-
son. 2018. Fast and precise touch-based text entry
for head-mounted augmented reality with variable
occlusion. ACM Transactions on Computer-Human
Interaction (TOCHI), 25(6).

Kevin Duh, Graham Neubig, Katsuhito Sudoh, and Ha-
jime Tsukada. 2013. Adaptation Data Selection us-
ing Neural Language Models: Experiments in Ma-
chine Translation. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 678–683,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Dylan Gaines, Per Ola Kristensson, and Keith Verta-
nen. 2021. Enhancing the composition task in text
entry studies: Eliciting difficult text and improving
error rate calculation. In Proceedings of the 2021
CHI Conference on Human Factors in Computing
Systems, CHI ’21, New York, NY, USA. Association
for Computing Machinery.

Jianfeng Gao, Joshua Goodman, Mingjing Li, and Kai-
Fu Lee. 2002. Toward a Unified Approach to Statis-
tical Language Modeling for Chinese. ACM Trans-
actions on Asian Language Information Processing,
1(1):3–33.

Guillem Gascó, Martha-Alicia Rocha, Germán
Sanchis-Trilles, Jesús Andrés-Ferrer, and Francisco
Casacuberta. 2012. Does More Data Always Yield
Better Translations? In Proceedings of the 13th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, EACL ’12,
page 152–161, USA. Association for Computational
Linguistics.

Shaona Ghosh and Per Ola Kristensson. 2017. Neu-
ral Networks for Text Correction and Comple-
tion in Keyboard Decoding. arXiv preprint
arXiv:1709.06429.

Ellyn Gregory, Melinda Soderman, Christy Ward,
David R Beukelman, and Karen Hux. 2006. AAC
Menu Interface: Effectiveness of Active versus Pas-
sive Learning to Master Abbreviation-Expansion
Codes. Augmentative and Alternative Communica-
tion, 22(2):77–84.

Sangmok Han, David R. Wallace, and Robert C. Miller.
2009. Code Completion from Abbreviated Input.
In Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, ASE ’09, page 332–343, USA. IEEE Computer
Society.

Almut Silja Hildebrand, Matthias Eck, Stephan Vo-
gel, and Alex Waibel. 2005. Adaptation of the
Translation Model for Statistical Machine Transla-
tion Based on Information Retrieval. In Proceed-
ings of the 10th EAMT Conference: Practical appli-
cations of machine translation, pages 133–142, Bu-
dapest, Hungary. European Association for Machine
Translation.

Brian Hur, Timothy Baldwin, Karin Verspoor, Laura
Hardefeldt, and James Gilkerson. 2020. Domain
Adaptation and Instance Selection for Disease Syn-
drome Classification over Veterinary Clinical Notes.
In Proceedings of the 19th SIGBioMed Workshop on

https://doi.org/10.1145/129875.129878
https://doi.org/10.1145/129875.129878
https://www.aclweb.org/anthology/D11-1033
https://www.aclweb.org/anthology/D11-1033
https://doi.org/10.18653/v1/K16-1031
https://doi.org/10.18653/v1/K16-1031
https://doi.org/10.18653/v1/K16-1031
https://doi.org/10.1145/129875.129881
https://doi.org/10.1145/129875.129881
https://doi.org/10.1145/129875.129881
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3232163
https://doi.org/10.1145/3232163
https://doi.org/10.1145/3232163
https://www.aclweb.org/anthology/P13-2119
https://www.aclweb.org/anthology/P13-2119
https://www.aclweb.org/anthology/P13-2119
https://doi.org/10.1145/3411764.3445199
https://doi.org/10.1145/3411764.3445199
https://doi.org/10.1145/3411764.3445199
https://doi.org/10.1145/595576.595578
https://doi.org/10.1145/595576.595578
https://www.aclweb.org/anthology/E12-1016
https://www.aclweb.org/anthology/E12-1016
https://doi.org/10.1109/ASE.2009.64
https://www.aclweb.org/anthology/2005.eamt-1.19
https://www.aclweb.org/anthology/2005.eamt-1.19
https://www.aclweb.org/anthology/2005.eamt-1.19
https://doi.org/10.18653/v1/2020.bionlp-1.17
https://doi.org/10.18653/v1/2020.bionlp-1.17
https://doi.org/10.18653/v1/2020.bionlp-1.17

6584

Biomedical Language Processing, pages 156–166,
Online. Association for Computational Linguistics.

Per Ola Kristensson and Shumin Zhai. 2004. SHARK2:
A Large Vocabulary Shorthand Writing System for
Pen-based Computers. In Proceedings of the 17th
Annual ACM Symposium on User Interface Software
and Technology, UIST ’04, pages 43–52, New York,
NY, USA. ACM.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. DailyDialog: A Manu-
ally Labelled Multi-turn Dialogue Dataset. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 986–995, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Sung-Chien Lin, Chi-Lung Tsai, Lee-Feng Chien, Ker-
Jiann Chen, and Lin-Shan Lee. 1997. Chinese Lan-
guage Model Adaptation Based on Document Clas-
sification and Multiple Domain-Specific Language
Models. In Proceedings of European Conference
on Speech Communication and Technology, pages
1463–1466.

Yajuan Lü, Jin Huang, and Qun Liu. 2007. Improv-
ing Statistical Machine Translation Performance by
Training Data Selection and Optimization. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 343–350, Prague, Czech Republic.
Association for Computational Linguistics.

Xiaofei Ma, Peng Xu, Zhiguo Wang, Ramesh Nalla-
pati, and Bing Xiang. 2019. Domain Adaptation
with BERT-based Domain Classification and Data
Selection. In Proceedings of the 2nd Workshop on
Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019), pages 76–83, Hong Kong, China.
Association for Computational Linguistics.

Saab Mansour, Joern Wuebker, and Hermann Ney.
2011. Combining Translation and Language Model
Scoring for Domain-Specific Data Filtering. In In-
ternational Workshop on Spoken Language Transla-
tion (IWSLT) 2011.

Robert C. Moore and William Lewis. 2010. Intelli-
gent Selection of Language Model Training Data. In
Proceedings of the ACL 2010 Conference Short Pa-
pers, ACLShort ’10, pages 220–224, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Emli-Mari Nel, Per Ola Kristensson, and David J. C.
MacKay. 2019. Ticker: An Adaptive Single-Switch
Text Entry Method for Visually Impaired Users.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(11):2756–2769.

Hugo Nicolau, André Rodrigues, André Santos, Tiago
Guerreiro, Kyle Montague, and João Guerreiro.

2019. The Design Space of Nonvisual Word Com-
pletion. In The 21st International ACM SIGAC-
CESS Conference on Computers and Accessibility,
ASSETS ’19, page 249–261, New York, NY, USA.
Association for Computing Machinery.

Zuzanna Parcheta, Germán Sanchis-Trilles, and Fran-
cisco Casacuberta. 2018. Data Selection for NMT
using Infrequent n-gram Recovery. In Proceedings
of the 21st Annual Conference of the European As-
sociation for Machine Translation, pages 219–227.
European Association for Machine Translation.

Adam Pauls and Dan Klein. 2011. Faster and Smaller
N-gram Language Models. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies - Volume 1, HLT ’11, pages 258–267, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Álvaro Peris, Mara Chinea-Rı́os, and Francisco
Casacuberta. 2017. Neural Networks Classifier for
Data Selection in Statistical Machine Translation.
The Prague Bulletin of Mathematical Linguistics,
108(1):283–294.

Stefano Pini, Sangmok Han, and David R. Wallace.
2010. Text Entry for Mobile Devices Using Ad-Hoc
Abbreviation. In Proceedings of the International
Conference on Advanced Visual Interfaces, AVI ’10,
page 181–188, New York, NY, USA. Association for
Computing Machinery.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models Are Unsupervised Multitask Learners. Ope-
nAI blog, 1(8):9.

Anthony Rousseau. 2013. XenC: An Open-Source
Tool for Data Selection in Natural Language Pro-
cessing. The Prague Bulletin of Mathematical Lin-
guistics, 100:73–82.

Holger Schwenk, Anthony Rousseau, and Mohammed
Attik. 2012. Large, Pruned or Continuous Space
Language Models on a GPU for Statistical Machine
Translation. In Proceedings of the NAACL-HLT
2012 Workshop: Will We Ever Really Replace the N-
gram Model? On the Future of Language Modeling
for HLT, pages 11–19, Montréal, Canada. Associa-
tion for Computational Linguistics.

Stuart M Shieber and Rani Nelken. 2007. Abbreviated
Text Input using Language Modeling. Natural Lan-
guage Engineering, 13(2):165–183.

Kumiko Tanaka-Ishii, Yusuke Inutsuka, and Masato
Takeichi. 2001. Japanese Text Input System With
Digits. In Proceedings of the First International
Conference on Human Language Technology Re-
search.

Keith Trnka, John McCaw, Debra Yarrington, Kath-
leen F. McCoy, and Christopher Pennington. 2009.

https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/1029632.1029640
https://www.aclweb.org/anthology/I17-1099
https://www.aclweb.org/anthology/I17-1099
https://www.isca-speech.org/archive/eurospeech_1997/e97_1463.html
https://www.isca-speech.org/archive/eurospeech_1997/e97_1463.html
https://www.isca-speech.org/archive/eurospeech_1997/e97_1463.html
https://www.isca-speech.org/archive/eurospeech_1997/e97_1463.html
https://www.aclweb.org/anthology/D07-1036
https://www.aclweb.org/anthology/D07-1036
https://www.aclweb.org/anthology/D07-1036
https://doi.org/10.18653/v1/D19-6109
https://doi.org/10.18653/v1/D19-6109
https://doi.org/10.18653/v1/D19-6109
https://www.aclweb.org/anthology/P10-2041
https://www.aclweb.org/anthology/P10-2041
https://doi.org/10.1109/TPAMI.2018.2865897
https://doi.org/10.1109/TPAMI.2018.2865897
https://doi.org/10.1145/3308561.3353786
https://doi.org/10.1145/3308561.3353786
http://dl.acm.org/citation.cfm?id=2002472.2002506
http://dl.acm.org/citation.cfm?id=2002472.2002506
https://doi.org/10.1145/1842993.1843026
https://doi.org/10.1145/1842993.1843026
https://www.aclweb.org/anthology/W12-2702
https://www.aclweb.org/anthology/W12-2702
https://www.aclweb.org/anthology/W12-2702
https://www.aclweb.org/anthology/H01-1044
https://www.aclweb.org/anthology/H01-1044

6585

User Interaction with Word Prediction: The Effects
of Prediction Quality. ACM Transactions on Acces-
sible Computing, 1:17:1–17:34.

Keith Vertanen, Crystal Fletcher, Dylan Gaines, Jacob
Gould, and Per Ola Kristensson. 2018. The Impact
of Word, Multiple Word, and Sentence Input on Vir-
tual Keyboard Decoding Performance. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’18, pages 626:1–626:12,
New York, NY, USA. ACM.

Keith Vertanen, Dylan Gaines, Crystal Fletcher,
Alex M. Stanage, Robbie Watling, and Per Ola Kris-
tensson. 2019. VelociWatch: Designing and Evalu-
ating a Virtual Keyboard for the Input of Challeng-
ing Text. In Proceedings of the 2019 CHI Confer-
ence on Human Factors in Computing Systems, CHI
’19, page 1–14, New York, NY, USA. Association
for Computing Machinery.

Keith Vertanen and Per Ola Kristensson. 2011a. A
Versatile Dataset for Text Entry Evaluations Based
on Genuine Mobile Emails. In Proceedings of the
13th International Conference on Human Computer
Interaction with Mobile Devices & Services, Mo-
bileHCI ’11, pages 295–298, New York, NY, USA.
ACM.

Keith Vertanen and Per Ola Kristensson. 2011b. The
Imagination of Crowds: Conversational AAC Lan-
guage Modeling using Crowdsourcing and Large
Data Sources. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 700–711, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Keith Vertanen and Per Ola Kristensson. 2014. Com-
plementing text entry evaluations with a composi-
tion task. ACM Transactions of Computer Human
Interaction, 21(2):8:1–8:33.

Keith Vertanen, Haythem Memmi, Justin Emge,
Shyam Reyal, and Per Ola Kristensson. 2015. Ve-
lociTap: Investigating Fast Mobile Text Entry Using
Sentence-Based Decoding of Touchscreen Keyboard
Input. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’15,
pages 659–668, New York, NY, USA. ACM.

Keith Vertanen, Haythem Memmi, and Per Ola Kris-
tensson. 2013. The Feasibility of Eyes-free Touch-
screen Keyboard Typing. In Proceedings of the
15th International ACM SIGACCESS Conference on
Computers and Accessibility, ASSETS ’13, pages
69:1–69:2, New York, NY, USA. ACM.

Daryl Weir, Henning Pohl, Simon Rogers, Keith Ver-
tanen, and Per Ola Kristensson. 2014. Uncertain
Text Entry on Mobile Devices. In Proceedings of the
SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’14, pages 2307–2316, New York,
NY, USA. ACM.

Tim Willis, Helen Pain, and Shari Trewin. 2005. A
Probabilistic Flexible Abbreviation Expansion Sys-
tem for Users with Motor Disabilities. In Proceed-
ings of the 2005 International Conference on Acces-
sible Design in the Digital World, Accessible De-
sign’05, page 4, Swindon, GBR. BCS Learning &
Development Ltd.

Tim Willis, Helen Pain, Shari Trewin, and Stephen
Clark. 2002. Informing Flexible Abbreviation Ex-
pansion for Users with Motor Disabilities. In
Proceedings of the 8th International Conference
on Computers Helping People with Special Needs,
ICCHP ’02, page 251–258, Berlin, Heidelberg.
Springer-Verlag.

Keiji Yasuda, Ruiqiang Zhang, Hirofumi Yamamoto,
and Eiichiro Sumita. 2008. Method of Selecting
Training Data to Build a Compact and Efficient
Translation Model. In Proceedings of the Third In-
ternational Joint Conference on Natural Language
Processing: Volume-II.

Shumin Zhai and Per Ola Kristensson. 2008. Interlaced
QWERTY: Accommodating Ease of Visual Search
and Input Flexibility in Shape Writing. In Proceed-
ings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’08, page 593–596, New
York, NY, USA. Association for Computing Machin-
ery.

Shumin Zhai, Alison Sue, and Johnny Accot. 2002.
Movement Model, Hits Distribution and Learning in
Virtual Keyboarding. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems, CHI ’02, page 17–24, New York, NY, USA.
Association for Computing Machinery.

Suwen Zhu, Tianyao Luo, Xiaojun Bi, and Shumin
Zhai. 2018. Typing on an Invisible Keyboard.
In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’18, pages
439:1–439:13, New York, NY, USA. ACM.

https://doi.org/10.1145/3173574.3174200
https://doi.org/10.1145/3173574.3174200
https://doi.org/10.1145/3173574.3174200
https://doi.org/10.1145/3290605.3300821
https://doi.org/10.1145/3290605.3300821
https://doi.org/10.1145/3290605.3300821
https://doi.org/10.1145/2037373.2037418
https://doi.org/10.1145/2037373.2037418
https://doi.org/10.1145/2037373.2037418
https://www.aclweb.org/anthology/D11-1065
https://www.aclweb.org/anthology/D11-1065
https://www.aclweb.org/anthology/D11-1065
https://www.aclweb.org/anthology/D11-1065
https://doi.org/10.1145/2555691
https://doi.org/10.1145/2555691
https://doi.org/10.1145/2555691
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2513383.2513399
https://doi.org/10.1145/2513383.2513399
https://doi.org/10.1145/2556288.2557412
https://doi.org/10.1145/2556288.2557412
https://www.aclweb.org/anthology/I08-2088
https://www.aclweb.org/anthology/I08-2088
https://www.aclweb.org/anthology/I08-2088
https://doi.org/10.1145/1357054.1357149
https://doi.org/10.1145/1357054.1357149
https://doi.org/10.1145/1357054.1357149
https://doi.org/10.1145/503376.503381
https://doi.org/10.1145/503376.503381
https://doi.org/10.1145/3173574.3174013

6586

Appendix

A Abbreviation Study Instructions
In our first crowdsourced study, we had 200 work-
ers abbreviate a series of ten email messages. Fig-
ure 6 shows the complete instructions we gave to
workers.

Figure 6: Instructions given to workers in our crowd-
sourced free-from abbreviation study.

B Error Rate to Compression
In our final crowdsourced study, we plotted par-
ticipants’ character error rate against increasing
abbreviation in the SENTENCE condition. With in-
creasing compression, the error rate also increased
(Figure 7).

●● ● ●

●

●

● ●

●

● ●● ● ●

●

●

●

●

●

●

●●● ●● ●● ●● ●●●●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

● ●●● ●

●

● ●●●

●

●● ●● ● ●●● ●●●● ●

●

●● ●●●

●

● ● ●● ●

●

●

●

●

●● ● ●●

●

●●

●

●

● ●●

●

●●●

●

●

●

● ●● ●● ●● ●● ●●● ●●● ●● ●

●

●●

●

●

● ●

●

● ●

●

●● ●●●● ●● ●●●● ● ●●

●

●

●●●● ●●

●

●

●●● ● ●●

●

●

●

● ●

●

●

● ●

●

●

●●● ●●

●

●

●

●●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●

●●●●

●

●● ●

●

●● ●

●

●● ●● ●●● ●●

●

● ●●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

● ●● ● ●●●●

●

●●●

●

●

●● ●●● ●

●

●●● ●●● ●●

●

●●● ●●

●

●●●●● ●● ●

●

●● ● ●

●

●●● ● ● ●● ●●

●

●

●

●●

●

●

●

●

●
●

● ●● ●●

●

●

●

● ●●●● ●● ● ●●

●

●●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

● ●● ●

●

●

●

●●●

●

● ●

●
●

●● ●● ●● ●● ●

●

●

●

●

●● ●

●

●

● ●●●● ● ●●

●

●

●●

●

●

●

●

●●

●

●● ●●● ●●● ● ●● ●

●

●

●●●

●

●

●

●

●

●

● ●

●

● ●●● ●●●

●

● ● ●● ● ●● ●

●

●

●

●● ● ●● ●

●

● ●● ●● ●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●● ● ●● ● ● ●● ● ●●

●

● ●● ●

●

●

● ●●

●

●

● ●●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●●● ●● ●●

●

●

●

● ●● ● ●

●

●●● ●● ● ●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●● ●●

●

●●

●

● ● ● ●● ●●

●

● ●●

●

●●

●

●

● ●● ●● ●

●

●

●
●

●

●

●

●

0

25

50

75

100

20 40 60 80

Compression of input (%)

E
rr

o
r

ra
te

 o
f
e
x
p
a
n
s
io

n
 (

C
E

R
 %

)

Figure 7: Error rate of automatic expansion with in-
creasing abbreviation of the input in the final study.

C Initial Automatic Expansion Experiment
Table 4 shows some examples from our initial au-
tomatic expansion experiment where the decoder
inserted all characters at all possible positions in a
worker’s input.

D Selecting Training Data
Table 5 shows a list of example sentences selected
using three ways: random selection, cross-entropy
difference selection, and BERT selection.

E Recognizing Noisy Abbreviated Input
Table 6 shows some examples of recognition re-
sults using the RNNLM rescoring configuration. A
complete list of recognition results is provided in
our supplementary materials.

6587

Original we are off to the uk in a couple of days

Abbreviation w r off t th uk n a cpl of dys

Expansion we are off to the uk in a couple of days

Original didn’t get a commitment just told them i thought it would be impossible

Abbreviation dnt gt a cmmt jst tld thm i tht it wd b mpss

Expansion don’t get a comment just told them i thought it would be impress

Original no arrangements he just hasn’t had a good year on a comparative basis

Abbreviation n ats he j h h a go ye on a ct b

Expansion and that’s the job he has a good eye on a city but

Table 4: Examples from the initial automatic expansion experiment in Section 3.2. Each example shows the
original text, workers’ abbreviated version, and the automatically expanded result. Errors are underlined.

Random selection
Random 1: i’m a huge fan of your work it’s really well done.

Random 2: the main challenge is to integrate more and more qubits to silicon chips.

Cross-entropy difference selection
Top 1: what’s for dinner? what’s for lunch?

Top 2: how’s things going?

Mid 1: want to know what happened during fish robert ed fish’s life?

Mid 2: do you want to work at a job or do you want to play at a passion.

Bottom 1: think super mario bros.

Bottom 2: is there a form applicants should submit, or should they just send an email with their resume?

BERT selection
Top 1: you don’t like doing homework?

Top 2: you need money?

Mid 1: i am very proud of you for what you are doing with your life right now.

Mid 2: imagine my terrible position!

Bottom 1: she has a bachelor’s degree in political science from lincoln university in oxford, pennsylvania.

Bottom 2: good relations are answers. bad relations are disasters.

Table 5: Examples of selected text data using three different approaches in Section 4.1. For BERT and cross-
entropy difference selection Top, Mid, and Bottom represent the absolute positions in the ordered list according to
their scores.

6588

Vowel drop probability Example

0.5 Reference: hopefully this can wait until monday

0.5 Input: hopeflltthisvamwwtujrlmndy

0.5 Recognition: hopefully this can wait until monday

0.5 Reference: let it rip

0.5 Input: ltutrp

0.5 Recognition: let it rip

0.5 Reference: should systems manage the migration

0.5 Input: shldsystensmnferhemgratin

0.5 Recognition: she’d systems manager he migration

1.0 Reference: could you see where this stands

1.0 Input: cldyusewhtwrgsstnda

1.0 Recognition: could you see where the stands

1.0 Reference: florida is great

1.0 Input: flrdaushrt

1.0 Recognition: florida is great

1.0 Reference: they are more efficiently pooled

1.0 Input: yhyare’rrefgvmyluplf

1.0 Recognition: they are more egg vinyl hold

Table 6: Examples of abbreviated and noisy input and the resulting recognition results for two different vowel
drop probabilities in Section 5.3. The input text represents the closest key to each tap observation in our data.
Recognition errors are underlined.

