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Abstract

We compare a variety of strategies for incorporating
spelling to create more robust voice-only speech in-
terfaces. These strategies use different combinations
of speaking the word, spelling the word, and spelling
the word using a phonetic alphabet. For correcting a
single recognition error, spelling the word or speaking
and spelling the word reduced error rates substantially.
Phonetic-spelling was very accurate with error rates on
a 5K task approaching zero. Most importantly, multiple
input strategies can be used simultaneously with only a
modest degradation in performance compared to allow-
ing only a single input strategy. Thus our work shows
that spelling-based input strategies offer the potential of
a simple, natural and effective way for users to both avoid
and correct recognition errors.
Index Terms: speech recognition, error correction

1. Introduction
Recovery from recognition errors in a speech interface
can be a time-consuming and frustrating process. While
the process can be improved via multimodal correction,
in some situations voice-only input is preferred, or some-
times required (e.g. in-car appliances, telephone dialog
systems, or for users who cannot type due to a disabil-
ity). The use of spelling in speech interfaces has been in-
vestigated for recognition of proper names [1, 2, 3], city
names [4], spontaneous speech [5], and to help correct
dictation errors [6, 7].

However past work has not systematically compared
the various ways users may perform a spelling. For exam-
ple, a user may spell a word, speak-and-spell a word, or
speak-and-spell-and-speak a word. There is also no prior
investigation of the accuracy tradeoffs associated with in-
cluding one or more spelling-based strategies when users
choose not to provide a spelling.

In this paper, we provide a thorough within-subject
accuracy comparison of seven input strategies involv-
ing speaking, spelling, and phonetically-spelling a word.
This systematic comparison enables us to understand the
potential accuracy offered by individual input strategies

and whether multiple strategies can be effectively com-
bined into a single recognition system.

2. Data Collection
2.1. Input Strategies

Our experimental task was to correct a single isolated
substitution error that had been made during recognition
of spoken WSJ sentences. For each substitution error,
we collected seven different utterances using the different
ways of combining speaking the word, spelling the word,
or phonetically spelling the word. The input strategies we
tested were:

• Word (W) – The word pronounced normally: “cat”.
• Spelling (S) – The spelling of a word: “C A T”.
• Word + spelling (WS) – The word followed by its

spelling: “cat C A T”.
• Word + spelling + word (WSW) – The word before

and after the spelling: “cat C A T cat”.
• Phonetic (P) – The military phonetic-spelling of a

word: “charlie alpha tango”.
• Word + phonetic (WP) – The word followed by its

phonetic-spelling: “cat charlie alpha tango”.
• Word + phonetic + word (WPW) – The word before

and after its phonetic-spelling: “cat charlie alpha
tango cat”.

2.2. Audio Collection and Recognition

We collected our audio data using a Flash-enabled web
page fielded on the popular crowdsourcing market Ama-
zon Mechanical Turk. Our human intelligence task (HIT)
specified that we required native speakers of North Amer-
ican English who could record in a quiet environment us-
ing a headset microphone. We provided both text and au-
dio examples for each of the input strategies. We created
a HIT for each of the unique words in our set of substi-
tution errors. Four unique workers recorded each word
using all seven input strategies. We paid $0.25 per HIT
and required US workers with a 95% HIT acceptance rate.
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We used the HTK speech recognizer with a speaker-
independent US-English acoustic model trained on 211
hours of wideband (16 kHz) WSJ audio data. We trained
cross-word triphones with a 3-state left-to-right HMM
topology. We used a 39-dimensional feature vector with
13 Mel-frequency cepstral coefficients, deltas and delta
deltas, and utterance-wide cepstral mean normalization.
Our model had 10000 tied-states, 32 continuous Gaus-
sians per state (64 for silence states), and diagonal co-
variance matrices. We used the CMU pronunciation dic-
tionary (39 phones plus silence).

Our trigram language model was trained on newswire
text from the CSR-III and English Gigaword corpora
(1.5B words). We used the WSJ 5K open vocabulary
set. We used interpolated modified Kneser-Ney smooth-
ing with no count-cutoffs. We entropy-pruned the model
to reduce its size.

Using HDecode we performed recognition on the
WSJ0 si dt 05 and WSJ1 si dt 05 test sets (923 total
utterances). The word error rate (WER) was 9.3%. From
these results, we selected words that were a) substitution
errors, b) in the 5K vocabulary, and c) two or more letters
long. We excluded one-letter words to avoid confusion
between the read version of a word and its spelled ver-
sion. We selected only words where the two words to
the left and right were correctly recognized, or where the
error occurred near the boundary of the sentence. This
resulted in 229 error locations. For each location we
added the reference word at that error location to our set
of words. This gave us 99 unique words that we had four
different workers record in each of the seven forms.

2.3. Collection Results

Workers took on average 1.5 minutes to complete each
HIT. A total of ten unique workers completed 2793 ut-
terances in 21 hours. We listened to every utterance we
received. We rejected the work of one non-native English
speaker. In six utterances, the worker misspoke. In these
cases, we eliminated that utterance along with the other
six recorded by the worker in that particular HIT. Overall
we were pleasantly surprised with the audio quality.

We measured utterance length as the time between the
worker clicking MIC ON and MIC OFF. Workers could
playback their last utterance and re-record as necessary.
If a worker had multiple microphone cycles for an utter-
ance, we used the length of the last one recorded. We also
measured how often workers re-recorded utterances.

The mean utterance length (in seconds) for each strat-
egy were: W 2.3, S 3.9, WS 5.0, WSW 6.1, P 4.9, WP 5.5,
WPW 6.3. As expected, speaking just the word was the
quickest. Spelling was slower than reading the word and
phonetic-spelling was slower still. However, note that
even the most tedious WPW strategy only required an ad-
ditional four seconds. For situations where the user may
anticipate recognition errors (e.g. when correcting a pre-

vious misrecognition or speaking a strange name), a few
extra seconds spent spelling a word might be time well
spent compared to risking a time-consuming correction
episode. We saw little difference in the number of mi-
crophone cycles between the input strategies (mean 1.1
cycles). This suggests, at least when users are given the
text to read (including any spelling), the various strategies
are at a similar level of difficultly.

3. Recognition Experiments
3.1. Recognition Grammar and Dictionary

Recognition used HVite and a simple word network that
connected the start-word to every word in the 5K vocab-
ulary. Each word was then connected to the end-word.
Thus the recognizer was forced to recognize exactly one
word from the 5K vocabulary. We used the same word
network for recognizing each type of input utterance. Ini-
tially, we were interested in the relative accuracy of the
input strategies and not their absolute error rate. Thus we
used a word network with no language model informa-
tion (i.e. it was a simple grammar of 5K words with no a
priori preference between the words).

We changed the pronunciation dictionary to reflect
whether a word was spoken, spelled, or a combination
thereof. For normal spelling, we used the pronunciation
in the CMU dictionary for the words “A.”, “B.”, etc. For
phonetic-spelling, we used the pronunciation for “alpha”,
“bravo”, etc. The words “golf”, “lima” and “whiskey”
had two pronunciations in the CMU dictionary. We used
only the first pronunciation. When words contained an
apostrophe, the spelling strategies used the pronunciation
for the word “apostrophe”.

Our acoustic model has a long silence model sil
and a short pause model sp. The sil phone has three
emitting states. The sp model has a single emitting state
and can transition without emission. The sp model is
skipped over when determining cross-word triphone con-
texts while the sil model is used in triphone contexts.
We tested three silence separation strategies:

• short separation – The sp model was used between
the pronunciation of every letter in normal and pho-
netic spelling. sp was also used between any initial
word pronunciation and a spelling, and between any
spelling and a final word pronunciation. For example,
the WSW entry for “cat” is: k ae t sp s iy sp
ey sp t iy sp k ae t.

• long separation – The same as short separation but
using the sil phone in place of sp.

• long/short separation – The sil model was used
to separate normal word pronunciations from any
spelled version. The sp was used between every let-
ter in normal and phonetic spelling. For example, the
WSW entry for “cat” is: k ae t sil s iy sp
ey sp t iy sil k ae t.
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Silence separation
Input strategy short long long/short

Word 49.6∗ 49.6∗ 49.6∗

Spelling 30.9∗ 11.3 30.9∗

Word + spelling 19.0 3.6 10.5
Word + spelling + word 20.3 4.4 9.5
Phonetic 1.3∗ 1.3 1.3∗

Word + phonetic 0.3 0.5 0.5
Word + phonetic + word 1.3 0.5 0.3

Mean 17.5 10.2 14.7

Table 1: Word error rate for different input strategies and
silence separation methods. In some rows certain silence
separation methods are equivalent (indicated by ∗).

3.2. Single Strategy Experiment

In our first recognition experiment, we assume the system
knows which input strategy the speaker is using. For each
strategy we had a set of 389 utterances. We tested each set
using pronunciation dictionaries built only for that partic-
ular input strategy. We tested each set with three different
dictionaries, one for each silence separation method.

Table 1 shows the results of the first experiment. Note
that since our recognizer can only return a single word,
our reported WER is equivalent to the percent of inputs
that failed. Across all silence separation methods, speak-
ing just the word was not an effective strategy. Spelling
performed better and phonetic-spelling performed much
better. Prefixing the spelling or phonetic-spelling with the
word improved accuracy further. In fact, saying the word
followed by the phonetic spelling had near perfect accu-
racy. This was despite our recognizer using no informa-
tion about the probability of the different words. Speak-
ing the word both before and after the spelling performed
similarly to speaking the word only before the spelling.

Workers tended to pause longer between the word and
the spelling section and between the spelling section and
any final word. The pauses during spelling or phonetic-
spelling were often much shorter. Despite this, as shown
in table 1, on average the best silence separation strat-
egy was to use a sil phone everywhere. Using only
the sil phone, spelling and phonetic-spelling improved
markedly. We observed that users adopted a very stac-
cato speaking style during spellings. We conjecture there
was little coarticulation between phones in different let-
ters’ pronunciations, making the context-blocking nature
of the sil phone better. For the remainder of this paper,
we will use dictionaries with long silence separation.

3.3. Combined Strategy Experiment

An interface based on a single input strategy would force
a rigid interaction style where any deviation from the sup-
ported strategy would likely result in misrecognition. En-

Input strategy Single Word/spell All

Word 49.6 49.9 49.9
Spelling 11.3 12.6 12.6
Word + spelling 3.6 4.9 4.9
Word + spelling + word 4.4 4.6 4.6
Phonetic 1.3 n/a 1.3
Word + phonetic 0.5 n/a 0.5
Word + phonetic + word 0.5 n/a 0.5

Table 2: Word error rate for systems supporting a single
input strategy or multiple strategies.

abling multiple input strategies simultaneously would al-
low users to intelligently select between strategies based
on the anticipated difficulty of an input. We therefore
compared our single strategy results with two combined
strategy systems. The first combination assumed users
would not use phonetic-spelling (combining W, S, WS,
and WSW). The second combination used all seven strate-
gies. The combined systems concatenated the strategy-
specific pronunciation dictionaries. All utterance types
were then recognized against this single dictionary.

As shown in table 2, the combined systems had only a
small increase in error rate for the W, S, WS and WSW ut-
terances. Both combined systems performed similarly on
these utterances. The system combining all strategies was
able to recognize phonetic-spelling utterance types with
the same accuracy as the strategy-specific baseline. Thus
it appears that the phonetic-based utterances are so differ-
ent from normal word or spelling utterances that they do
not confuse the recognizer. Notably, normal word recog-
nition experienced very little accuracy degradation even
when six additional input strategies were active.

The main disadvantage of using the combined sys-
tems was the additional time required for recognition.
The combination without phonetic-spellings was 1.7
times slower than the single-strategy baseline. Using all
strategies was 2.3 times slower than the single-strategy
system. But given the advantage of allowing a choice of
input strategies, we will use a system that combines all
seven strategies for the remainder of this paper.

3.4. Larger Vocabulary Size Experiment

Thus far we have used a small vocabulary of 5K words.
When users provided spelling information, very accurate
input was possible despite not using a language model.

We also investigated spelling-based input using larger
vocabularies. We built dictionaries and word networks
that included the top 10K, 20K and 64K words from our
newswire data. All words in our audio collection were in
every vocabulary size. Since larger vocabularies slowed
the HVite decoder, we narrowed our search beam to 250
compared to the beam of 500 used in previous experi-
ments. As shown in table 3, recognition became harder
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Vocabulary size
Input strategy 5K 10K 20K 64K

Word 49.9 54.2 59.1 67.1
Spelling 12.9 15.4 17.7 22.9
Word + spelling 4.9 6.9 8.7 11.3
Word + spelling + word 4.6 6.2 7.2 9.8
Phonetic 4.6 4.6 4.9 6.7
Word + phonetic 0.8 1.5 1.5 2.1
Word + phonetic + word 2.1 2.3 2.3 3.6

Mean 11.4 13.0 14.5 17.6

Table 3: Word error rate for different vocabulary sizes.

as vocabulary sized increased. The danger of too narrow
a search beam is evidenced by the much higher error rate
on the P utterances compared to earlier experiments.

3.5. Language Model Context Experiment

Finally, we investigated the input strategies in a voice-
only correction scenario in which a user has selected a
recognition error and spoken a correction. The error se-
lection may have been done manually by the user (e.g. us-
ing the mouse) or automatically using the spoken correc-
tion [8]. In such a scenario, the prior words are likely
correct and can provide language model context.

We set each word’s probability using a 5K uni-
gram, bigram or trigram language model trained on our
newswire corpora. The bigram and trigram models used
the prior words of context given the location of the error
in the WSJ test sets. Recall that we selected 229 substi-
tution errors in the WSJ test sets and these consisted of
99 unique words (the words we recorded from workers).
We eliminated one word “point” because it constituted a
large number of the error locations (70 out of 229).

The four different recordings for each word and for
each input strategy were recognized at each error loca-
tion. To make the no language model and unigram re-
sults comparable to the bigram and trigram results, we
duplicated the no language model and unigram results
according to the number of times each unique words ap-
peared in the set of error locations. Note this duplication
makes the no language model results differ from our pre-
vious experiments. We used a search beam of 500. Ta-
ble 4 shows that more language model context resulted in
higher accuracy. The advantage of spelling strategies re-
mained strong and consistent with previous experiments.

4. Conclusions
Our results demonstrate how speech interfaces can be
made more robust if users are allowed to supply ad-
ditional information via spelling and phonetic-spelling.
For speech interfaces designers considering incorporat-
ing spelling-based strategies, we highlight several impor-

Language model
Input strategy none uni bi tri

Word 56.0 51.2 46.7 34.9
Spelling 17.9 11.5 14.7 9.6
Word+spelling 8.8 3.7 5.9 3.8
Word+spelling+word 8.6 6.1 5.4 4.3
Phonetic 0.8 1.1 1.1 1.1
Word+phonetic 0.3 0.3 0.5 0.3
Word+phonetic+word 0.3 0.5 0.8 0.3

Mean 13.2 10.6 10.7 7.8

Table 4: Word error rate of different 5K language models.

tant considerations. First, the accuracy of spelling-based
strategies depends crucially on using a silence model that
blocks phonetic-context between spelled letters. Without
such context-blocking, error rates using spelling-based
input strategies increased several fold.

Second, interface designers may want to offer a set
of possible input strategies since users may incorporate
spelling in different ways. We provide the first system-
atic accuracy comparison of various word input options
that involve spelling. We show that multiple spelling-
based strategies can be used in tandem with normal in-
put mechanisms without unduly impacting normal recog-
nition. Based on this evidence we recommend speech
interface designers consider incorporating spelling-based
strategies. They offer the potential for a natural, simple,
and effective way to help users avoid and correct errors.
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