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Abstract 

It is well documented that people with severe 
speech and physical impairments (SSPI) often 
experience literacy difficulties, which hinder 
them from effectively using orthographic-
based AAC systems for communication. To 
address this problem, phoneme-based AAC 
systems have been proposed, which enable 
users to access a set of spoken phonemes and 
combine phonemes into speech output. In this 
paper we investigate how prediction tech-
niques can be applied to improve user perfor-
mance of such systems. We have developed a 
phoneme-based prediction system, which sup-
ports single phoneme prediction and pho-
neme-based word prediction using statistical 
language models generated using a 
crowdsourced AAC-like corpus. We incorpo-
rated our prediction system into a hypothetical 
12-key reduced phoneme keyboard. A compu-
tational experiment showed that our prediction 
system led to 56.3% average keystroke sav-
ings. 

1 Introduction 

Over the last forty years there has been an increas-
ing number of high-tech AAC systems developed 
to provide communication support for individuals 
with severe speech and physical impairments 
(SSPI). Most of existing AAC systems can be clas-
sified into two categories, namely graphic-based 
and orthographic-based systems. Graphic-based 
systems utilize symbols to encode a limited set of 
frequently used words and utterances, thereby sup-
porting fast access to pre-stored items. However, 
there is a high cognitive overhead associated with 

learning the encoding methods of these systems, 
which can be problematic for many AAC users, 
especially those with intellectual disabilities. In 
addition, users of these systems are limited to pre-
programmed items rather than being able to create 
novel words and messages spontaneously. In con-
trast, orthographic-based AAC systems allow users 
to spell out their own messages. Prediction tech-
niques, such as character or word prediction, are 
often applied to improve the usability and accessi-
bility of these systems. However, these systems 
require users to master literacy skills, a well-
documented problem for many children and adults 
with SSPI (Koppenhaver and Yoder, 1992). 

The question arises as to how AAC systems can 
be designed to enable pre-literate users with SSPI 
to generate novel words and messages in sponta-
neous conversations. A potential solution for this 
question is to adopt a phoneme-to-speech genera-
tion approach. This approach allows users to ac-
cess a limited set of spoken phonemes and blend 
phonemes into speech output, thereby enabling 
them to create spontaneous messages without 
knowledge of orthographic spelling. This approach 
has been applied in several phoneme-based AAC 
systems to support communication (Glennen and 
DeCoste, 1997) and literacy learning (Black et al., 
2008). It has also been utilized as an alternative 
typing method for people with spelling difficulties 
(Schroeder, 2005).  

Despite such potential, phoneme-based AAC 
systems have been an under-researched topic. In 
particular, little work has been done on the applica-
tion of Natural Language Processing (NLP) tech-
niques to these systems. Thus, in this paper we 
investigate how prediction methods can be incor-
porated into phoneme-based AAC systems to facil-
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itate phoneme entry. We develop a basic phoneme-
based prediction system, which provides predic-
tions at both phoneme and word levels based on 
statistical language modeling techniques. We use a 
6-gram phoneme mixture model and a 3-gram 
word mixture model trained on a large set of AAC-
like data assembled from multiple sources, such as 
Twitter, Blog, and Usenet data. We take into con-
sideration issues such as pronunciation variants 
and user accents in the design of our system. We 
performed a theoretical evaluation of our system 
on three different test sets using a simulated inter-
face and report results of hit rate and potential key-
stroke savings. Finally, we propose a number of 
further studies to extend the current work. 

2 Background  

2.1 Phoneme-based AAC Systems 

The idea of using phonemes in AAC systems was 
first commercially introduced by Phonic Ear in 
1978 in the HandiVoice 110 (Creech, 2004; 
Glennen and DeCoste, 1997; Williams, 1995). The 
device provided users with direct access to a mixed 
vocabulary consisting of pre-programmed words, 
short phrases, letters, morphemes, and 45 pho-
nemes. Users could generate synthetic speech from 
phoneme sequences using the Votrax speech syn-
thesizer. Similar to the HandiVoice is the Finger 
Foniks, a handheld communicator developed by 
Words+ (Glennen and DeCoste, 1997). The device 
enables users to access prerecorded messages and a 
set of 36 phonemes from which they could gener-
ate unlimited speech output. Neither of these de-
vices offered any prediction features.  

The PhonicStick™, a talking joystick (Black et 
al., 2008), is a phoneme-based AAC device devel-
oped by researchers at the University of Dundee.  
Unlike the HandiVoice and the Finger Foniks, the 
primary use of the PhonicStick™ is to facilitate 
language play and phonics teaching for children 
with SSPI. The device allows users to access the 
42 phonemes used in the Jolly Phonics literacy 
program (Lloyd, 1998) by moving the joystick 
along pre-defined paths. A prototype of the Phon-
icStick™, using a subset of 6 Jolly Phonics’ pho-
nemes, has been evaluated with seven children 
without and with SSPI. Results of the evaluations 
demonstrated that the participants could create 
short words using the phonemes. However, some 

participants with poor hand function experienced 
significant difficulties in using the joystick to se-
lect target phonemes (Black et al., 2008). This 
suggests that the PhonicStick™ could benefit from 
prediction mechanisms to reduce the number of 
difficult joystick movements required for each 
phoneme entry. 

The phoneme-to-speech approach is not only ap-
plied in dedicated AAC systems but also in alterna-
tive typing interfaces for individuals with spelling 
difficulties. An example of such applications is the 
REACH Sound-It-Out Phonetic Keyboard™ 
(Schroeder, 2005). This on-screen keyboard com-
prises 40 phonemes and 4 phoneme combinations. 
It offers two types of prediction features, including 
phoneme prediction and word prediction. The pho-
neme prediction feature uses a pronunciation dic-
tionary to determine which phonemes cannot 
follow the currently selected phonemes. These 
phonemes are then removed from the keyboard, 
thereby facilitating users in visually scanning and 
identifying the next phoneme in the intended word. 
The word prediction feature also uses a dictionary 
to search for the most frequently used words that 
phonetically match the currently selected phoneme 
sequence. To our knowledge, this is the only cur-
rently available system that provides phoneme-
based predictions. However, these predictions use 
a simple dictionary-based prediction algorithm, 
which does not take into account contextual infor-
mation (e.g. prior text). There has been little or no 
published research into how more advanced NLP 
techniques can be employed to improve the per-
formance of phoneme-based predictions.  

2.2 Prediction in AAC Systems 

Prediction techniques have been extensively uti-
lized in many AAC systems to achieve keystroke 
savings and potential communication rate en-
hancement (Garay-Victoria and Abascal, 2005). 
There are various prediction strategies that have 
been developed in these systems, of which the 
most commonly used are character prediction and 
word prediction. Character prediction anticipates 
next probable characters given the preceding char-
acters. It is typically applied in reduced keyboards 
and scanning-based AAC systems to augment the 
scanning process (Lesher et al., 1998). Word pre-
diction anticipates the word being entered on the 
basis of the previously selected characters and 

20



words, thereby saving the user the effort of enter-
ing every character of a word.  

Most existing prediction systems employ statisti-
cal language modelling techniques to perform pre-
diction tasks. Prediction accuracy generally 
increases with higher-order n-gram language mod-
els. However, most systems are limited to 6-gram 
models for character prediction and 3-gram models 
for word prediction, as the gain from higher-order 
models is often small at the cost of considerably 
increased computational and storage resources. To 
further improve the prediction performance, a 
number of advanced language modelling tech-
niques have been investigated, which take into ac-
count additional information such as word recency 
(Swiffin et al., 1987), syntactic information 
(Hunnicutt and Caarlberger, 2001; Swiffin et al., 
1987), semantic information (Li and Hirst, 2005), 
and topic modelling (Trnka et al., 2006). These 
techniques have the potential of improved key-
stroke savings at the cost of increased computa-
tional complexity. 

A fundamental issue of the statistical-based pre-
diction approach is that its performance is heavily 
dependent on the size of the training corpus and 
the degree to which the corpus represents the do-
main of use. Therefore, in the development of sta-
tistical-based prediction for conversational AAC 
systems, it may be ideal to construct language 
models from a large corpus of transcribed conver-
sations of real AAC users. However, such a corpus 
has been unavailable to date. To address this prob-
lem, previous research has utilized corpora of tele-
phone transcripts, such as the Switchboard corpus, 
and performed cleanup processing to make them a 
more appropriate approximate of AAC communi-
cation (Lesher and Rinkus, 2002; Trnka et al., 
2006). Vertanen and Kristensson (2011) have re-
cently proposed a novel solution to this problem by 
creating a large corpus of fictional AAC messages. 
Using Amazon Mechanical Market, the researchers 
crowdsourced a small dataset of AAC-like mes-
sages, which was then used to select a much larger 
set of AAC-like data from Twitter, Blog, and Use-
net datasets. The language models trained on this 
AAC-like corpus were proved to outperform other 
models trained on telephone transcripts (Vertanen 
and Kristensson, 2011). 

3 Phoneme-based Prediction System  

Although statistical-based predictions have been a 
well-studied topic, little or no research has been 
published on how well these predictions can be 
adapted to phoneme-based AAC systems. In this 
section, we describe our phoneme-based prediction 
system, which employs statistical language model-
ing techniques to perform phoneme prediction and 
phoneme-based word prediction.  Phoneme predic-
tion predicts probable next phonemes based on the 
previously entered phonemes. Word prediction 
predicts the word currently being entered based on 
the current phoneme prefix and prior words. 

3.1 Phoneme Set 

 Unlike traditional orthographic-based AAC sys-
tems that operate on a standard character set, dif-
ferent phoneme-based systems tend to use slightly 
different phoneme sets. For our prediction system, 
we use the phoneme set from the Jolly Phonics, a 
systematic synthetic phonics program widely used 
in the UK for literacy teaching (Lloyd, 1998). The 
phoneme set, to be called the PHONICS set, con-
sists of 42 phonemes, with 17 vowels and 25 con-
sonants. By using a literacy-linked phoneme set, 
our prediction system can readily be integrated into 
both literacy learning tools (such as the Phon-
icStick™ joystick (Black et al., 2008)) and com-
munication aids. Other systems that use different 
phoneme sets can also be easily adapted to utilize 
our prediction system by providing a phoneme 
mapping scheme between their phoneme sets and 
the PHONICS set. 

3.2 Pronunciation Dictionary 

3.2.1 The PHONICS Dictionary 

The development of phoneme-based predictions 
requires a pronunciation dictionary, which should 
be accent-specific as pronunciations may vary 
across different accents. There has been no dic-
tionary to date that contains word pronunciations 
using the PHONICS set. To address this problem, 
we built our PHONICS pronunciation dictionary 
based on the Unisyn1 lexicon, as it provides facili-
ties for generating dictionaries in different accents. 
The Unisyn uses the concept of key-symbols (i.e. 
meta-phonemes) to encode the characteristics of 
                                                             
1 http://www.cstr.ed.ac.uk/projects/unisyn/ 
2 http://aac.unl.edu/vocabulary.html, accessed 4 September 
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multiple accents into a single base lexicon. Accent-
specific rules can then be applied to the base lexi-
con to produce pronunciations in a given accent.  

To create the PHONICS dictionary, we first de-
rived a lexicon in the Edinburgh accent from the 
base lexicon using a set of Perl scripts supplied 
with Unisyn. We also performed additional clean-
up processing to remove unwanted information, 
such as stress and boundary markers. We then cre-
ated a mapping function from the set of 61 pho-
nemes and allophones used in the Edinburgh 
lexicon to the PHONICS set. As the PHONICS set 
only contains 42 phonemes, several allophones in 
the Edinburgh set were mapped to the same pho-
nemes in the PHONICS set. This mapping function 
was then used to convert the Edinburgh lexicon to 
the PHONICS pronunciation dictionary. The re-
sulting dictionary consists of 121,004 pronuncia-
tion entries for 117,625 unique words. 

3.2.2 The Schwa Phoneme 

An issue of the phoneme mapping is that the Edin-
burgh set contains the schwa phoneme (denoted by 
the symbol ‘@’), which cannot be mapped to any 
phonemes in the PHONICS set. The schwa, a re-
duced form of full vowels in unstressed syllables, 
occurs in 41,539 entries in the PHONICS diction-
ary. An example of a word containing the schwa 
phoneme is ‘today’ (/t @ d ai/). While the schwa is 
the most commonly used vowel sound in spoken 
English (Gimson and Cruttenden, 2001), it is not 
included in the Jolly Phonics teaching as it is a dif-
ficult concept to understand for literacy learners at 
early stages.  

The simplest solution for this issue would be to 
explicitly add the schwa phoneme into the 
PHONICS set in our prediction system. However, 
learning to use the schwa correctly can be chal-
lenging for users with SSPI and literacy difficul-
ties. Thus, we decided to support two modes in our 
system, namely the SCHWA_ON and the 
SCHWA_OFF modes. In the SCHWA_ON mode, 
the schwa phoneme is explicitly added to the 
PHONICS set, increasing the set to 43 phonemes. 
In the SCHWA_OFF mode, the schwa is not added 
into the PHONICS set and therefore is not offered 
to the users for selection. To deal with the absence 
of the schwa, we employed a basic auto-correction 
method. To search for a word given a phoneme 
sequence, we apply a limited set of schwa insertion 

and replacement rules (e.g. replacing vowels with 
schwas) to generate a set of alternative sequences. 
These sequences and the original sequence are then 
used to look up a list of matching words in the 
PHONICS dictionary. Once the user has selected a 
word from this list, the correct pronunciation of the 
selected word (which might include the schwas) 
would be used to replace the original phoneme se-
quence in the currently selected phoneme string. 
This corrected phoneme string would then be input 
to the phoneme language model (described in Sec-
tion 3.3.1) to predict probable next phonemes.  

3.3 Phoneme Prediction 

We trained a 6-gram phoneme language model 
starting with training data from: 

• Twitter messages collected via the free 
streaming API between December 2010 and 
July 2011. 36M sentences, 251M words. 

• Blog posts from the ICWSM corpus (Burton 
et al., 2009). 25M sentences, 387M words. 

• Usenet messages (Shaoul and Westbury, 
2009). 123M sentences, 1847M words. 

We used the crowdsourced data from Vertanen and 
Kristensson (2011) to select AAC-like sentences 
using cross-entropy difference selection (Moore 
and Lewis, 2010). The selection process retained 
6.9M, 1.6M, and 2.3M words of data from the 
Twitter, Blog and Usenet data sets respectively. 
We converted the words in the selected sentences 
to pronunciation strings using the PHONICS dic-
tionary. Whenever we encountered a word with 
multiple pronunciations, we chose a pronunciation 
at random. If a sentence had a word not in the 
PHONICS dictionary, we dropped the entire train-
ing sentence. 

We trained a 6-gram phoneme language model 
for each of the Twitter, Blog, and Usenet data sets. 
Estimation of unigrams used Witten-Bell discount-
ing while all higher order n-grams used modified 
Kneser-Ney discounting with interpolation. We 
then created a mixture model via linear interpola-
tion with mixture weights optimized on the 
crowdsourced development set from Vertanen and 
Kristensson (2011). The optimized mixture 
weights were: Twitter 0.54, Blog 0.25, and Usenet 
0.21. Our final mixture model has 2.0M parameters 
and a compressed disk size of 14 MB. 
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Figure 1. Hit rates of the phoneme prediction for prediction list lengths 1-15 in the SWCHA_ON and SCHWA_OFF 
modes. Results on the SPECIALISTS, COMM, and SWITCHTEST test sets. 
 

3.3.1 Hit Rate 

We evaluated the accuracy of our phoneme predic-
tion using hit rate. Hit rate (HR) is defined as the 
percentage of times that the intended phonemes 
appear in the prediction list: 

HR = 

€ 

Number of times the
phoneme is predicted
Number of phonemes

×100% 

We computed the hit rates for prediction lists of 
lengths 1-15 in both SCHWA_ON and 
SCHWA_OFF modes. The results of this evalua-
tion would help inform the decision of the number 
of predicted items to be presented to the users, 
which is a key usability factor of prediction sys-
tems.  

We evaluated the hit rates on the following test 
sets: 

• SPECIALISTS: A collection of context 
specific conversational phrases recom-
mended by AAC professionals2. 966 sen-
tences, 3814 words. Out-of-vocabulary 
(OOV) rate: 0.05%. 

• COMM: A collection of sentences written 
by college students in response to 10 hypo-
thetical communication situations 
(Venkatagiri, 1999). 251 sentences, 1789 
words. OOV rate: 0.3%. 

• SWITCHTEST: Three telephone tran-
scripts taken from the Switchboard corpus, 
used in Trnka et al. (2009). 59 sentences, 
508 words. OOV rate: 0.4%. 

These three test sets are used throughout this pa-
per. For each sentence in the test sets, we generat-
                                                             
2 http://aac.unl.edu/vocabulary.html, accessed 4 September 
2011 

ed its pronunciation string using the PHONICS 
dictionary. During this generation, any time we 
encountered a word with multiple pronunciations, 
we chose a pronunciation at random. We manually 
added pronunciations for OOV words. The gener-
ated pronunciations were used to calculate the hit 
rates in the SCHWA_ON mode. We then created a 
‘non-schwa’ version of each pronunciation string, 
in which we removed all schwa occurrences by 
either deleting them or replacing them with appro-
priate vowels in the PHONICS set. The ‘non-
schwa’ pronunciations were used to calculate the 
hit rates in the SCHWA_OFF mode. 

As shown in Figure 1, the hit rate improved as 
the prediction list length (L) increased in both the 
SCHWA_OFF and SCHWA_ON modes for all the 
three test sets. For most L values, the system per-
formed the best on the SPECIALISTS test set and 
the worst on the SWITCHTEST set. At L=1, the 
average hit rates for the three test sets were 47.1% 
in the SCHWA_OFF mode and 50.1% in the 
SWITCH_ON mode. At L=5 (which is the length 
usually offered in prediction systems), the average 
hit rate increased to 76.2% in the SCHWA_OFF 
mode and 78.4% in the SCHWA_ON mode. At 
L=15, the system reached high average hit rates of 
93.6% in the SCHWA_OFF mode and 94.3% in 
the SCHWA_ON mode. 

The SCHWA_ON mode achieved higher hit 
rates than the SCHWA_OFF mode for all L values. 
However, the hit rate differences between these 
two modes tended to diminish as L increased. At 
L=1, the average difference for the three test sets 
was 3.0%. At L=5, the average difference reduced 
to 2.2%. At L=15, the average difference was very 
small, at 0.7%. 
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Figure 2. Hit rates of the word prediction for prediction list lengths 1-15 in the SWCHA_ON and SCHWA_OFF 
modes for 1-phoneme and 2-phoneme prefixes. Results on the SPECIALISTS, COMM, and SWITCHTEST test 
sets. 

3.4 Phoneme-based Word Prediction 

We used a publicly available 3-gram word mixture 
model3, which was created from three 3-gram 
models trained on AAC-like data from Twitter, 
Blog, and Usenet (Vertanen and Kristensson, 
2011). Although a 4-gram model trained on the 
same datasets is also available, it was not used in 
our system as it has been shown to only slightly 
outperform the 3-gram model at the cost of a much 
bigger model size (Vertanen and Kristensson, 
2011). Our aim is to keep our prediction system’s 
size reasonably small, thereby allowing it to be 
easily integrated into devices with limited re-
sources, such as mobile devices. 

To perform word prediction given a phoneme 
prefix, we first search for a set of matching words 
in the PHONICS dictionary. In the SCHWA_OFF 
mode, the phoneme prefix is input to the auto-
correction function to generate alternative prefixes, 
which are then used to look up matching words in 
the dictionary. If there is no matching word, an 
unknown word (denoted as <unk>) is returned. 
The matching words are then input to the word 
model to calculate their probabilities based on up 
to two prior words. 

3.4.1 Hit Rate 

We computed the hit rate (HR) of word prediction 
for prediction list lengths 1-15 in two conditions: 
(1) after the first phoneme is entered, (2) after the 
first two phonemes are entered: 

                                                             
3 
http://www.aactext.org/imagine/lm_mix_top3_3gram_abs0.0.
arpa.gz 

HR =
  

€ 

Number of times the word is predicted
Number of words

×100% 

Figure 2 shows the hit rates of word prediction in 
the SCHWA_OFF and SCHWA_ON modes on the 
three test sets. As expected, the hit rates improved 
as the prediction list length (L) increased. Table 1 
summarizes the average hit rates for several list 
lengths for 1-phoneme and 2-phoneme prefixes. At 
L=5, the average hit rates were 92.5% in the 
SCHWA_OFF mode and 93.2% in the 
SCHWA_ON mode after the first two phonemes 
are entered. This means that in most cases, the in-
tended word is predicted after two keystrokes. The 
SCHWA_ON mode achieved higher hit rates than 
the SCHWA_OFF mode in all cases. However, the 
hit rate differences between these two modes were 
very small (<1%), which implies that our auto-
correction mechanism was effective. 
 

L 
SCHWA_OFF SCHWA_ON 

1-
phoneme 

2-
phoneme 

1-
phoneme 

2-
phoneme 

1 55.6% 80.4% 55.9% 80.8% 
5 79.0% 92.5% 79.7% 93.2% 

10 86.0% 94.5% 86.2% 95.0% 
15 88.0% 95.1% 88.3% 95.8% 

 
Table 1. Average hit rates of word prediction. 

4 Theoretical Evaluation 

AAC users with physical impairments often expe-
rience difficulties in accessing a large number of 
keys on conventional full-sized keyboards.  To 
address this problem, previous research has pro-
posed the use of reduced keyboards (i.e. keyboards 
on which each key is assigned a group of charac-
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ters, such as the 12-key mobile phone keyboard) 
(Arnott and Javed, 1992; Kushler, 1998). Character 
prediction and word prediction can be applied to 
these keyboards to disambiguate characters on 
each key. We adopted this idea by creating a hypo-
thetical 12-key phoneme keyboard and evaluated 
the benefits of incorporating phoneme prediction 
and word prediction into the keyboard. 

4.1 Phoneme-based Predictive Interface 

Our 12-key phoneme keyboard contains 8 pho-
neme keys, which represent 3 vowel groups and 5 
consonant groups. These groups, introduced in the 
PhonicStick™ talking joystick (Black et al., 2008; 
Lindström and Peronius, 2010), are formed accord-
ing to the manner of articulation of the phonemes 
(see Figure 3a). Each key represents three to seven 
phonemes; the schwa phoneme is excluded. The 
phonemes on each key are initially arranged ac-
cording to the unigram probabilities estimated by 
our phoneme language model.  
 

 
Figure 3. Phoneme-based reduced keyboard. 

 
The keyboard provides two phoneme entry 

modes, namely the MULTITAP and the 
PREDICTIVE modes. In the MULTITAP mode, 
the user enters a phoneme by pressing a corre-
sponding key repeatedly until the intended pho-
neme appears (e.g. pressing the ‘Unvoiced 
Plosives’ key 3 times to enter /p/). In the 
PREDICTIVE mode, the keyboard utilizes our 
prediction system in its SCHWA_OFF mode to 
predict probable next phonemes and words. Each 
time the user presses a key the phoneme prediction 
is applied to guess which of the possible phonemes 
on the pressed key is actually the user’s intended 
phoneme. If the prediction is incorrect, the user can 
repeatedly press the NEXT key until the correct 

phoneme is selected. After each phoneme selec-
tion, we present a list of up to 5 predicted words. 
We only offer word predictions after the first pho-
neme of a new word is entered. If the intended 
word appears in the prediction list, we assume it 
takes one keystroke for the user to add the word 
and a following space to the current sentence (this 
can be implemented using automatic scanning 
(Glennen and DeCoste, 1997)). 

4.2 Results 

We evaluated our prediction system using two 
commonly used metrics: keystroke savings and 
keystrokes per character. 

4.2.1 Keystroke Savings 

Keystroke Savings (KS) is defined as the percent-
age of keystrokes that the user saves by using pre-
diction methods compared to using the 
MULTITAP method: 

  

€ 

KS = 1− PREDICTIONKeystrokes

MULTITAPKeystrokes

# 

$ 

% 
% 

& 

' 

( 
( 
×100%

 
We computed KS on the three test sets for three 
methods: (1) only phoneme prediction (PP), (2) 
only word prediction (WP), (3) combined phoneme 
prediction and word prediction (PP+WP) (i.e. the 
PREDICTIVE mode).  

As shown in Figure 4, a combined phoneme and 
word prediction method performed the best with an 
average keystroke savings of 56.3%. Using only 
word prediction led to a 46.4% average KS while 
using only phoneme prediction resulted in 29.9% 
average KS. 

 

 
Figure 4. Keystroke Savings (KS) for prediction meth-
ods on three test sets. 
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4.2.2 Keystrokes Per Character 

Keystrokes per character (KSPC) is defined as the 
average number of keystrokes required to produce 
a character in the test set: 

  

€ 

KSPC=
Keystrokes

Number of characters (including spaces) 
The evaluation of KSPC allows us to compare our 
keyboard with existing character-based reduced 
keyboards. We computed the KSPC for four meth-
ods: (1) MULTITAP, (2) PP, (3) WP, (4) PP+WP. 
For comparison, we also calculated the KSPC for a 
standard 12-key mobile phone alphabetic keyboard 
(Figure 3b), which uses the character-based multi-
tap method for text entry.  

As shown in Figure 5, our frequency-based pho-
neme keyboard outperformed the standard mobile 
phone keyboard even when no prediction methods 
are applied (i.e. in the MULTITAP mode) (see 
Figure 5). At an average KSPC of 1.568, our key-
board required 19.1% fewer keystrokes per charac-
ter than the mobile phone multitap keyboard 
(KSPC=1.937). There are two reasons that might 
explain this result. First, on average one phoneme 
represents more than one character (in our diction-
ary, the character/phoneme ratio is 1.208). Second, 
our keyboard’s phonemes were initially ordered by 
the unigram frequencies.  

When applying only phoneme prediction, the av-
erage KSPC decreased to 1.100, which closely ap-
proaches the KSPC of a QWERTY keyboard 
(KSPC=1). The KSPC further reduced to 0.841 
with solely word prediction and 0.685 with com-
bined phoneme and word prediction.  

 
Figure 5. Keystrokes Per Character (KSPC) for different 
text entry methods on three test sets. 

5 Conclusions and Future Work 

In this paper we have described how statistical lan-
guage modeling techniques can be used to provide 

phoneme prediction and word prediction for pho-
neme-based AAC systems. Using hit rate meas-
urement we demonstrated how the prediction 
accuracy improved as the prediction list length in-
creased. However, a large prediction list might re-
sult in an increased time and cognitive workload 
required from the user to scan the list and select the 
desired item. Therefore, hit rate data need to be 
combined with empirical experiments with real 
users in order to determine an appropriate predic-
tion list length.  

We evaluated our prediction system on a 12-key 
phoneme keyboard, in which phonemes are 
grouped based on the manner of articulation and 
ordered using our phoneme unigram frequencies. 
We showed that we could achieve a potential key-
stroke savings of 56.3% by applying a combined 
phoneme and word prediction to our keyboard. 
Using word prediction alone proved to be more 
effective than using phoneme prediction alone, in 
terms of keystroke savings. 

 We plan to take this work forward by exploring 
two complementary research directions. 

 First, we plan to conduct empirical experiments 
with a group of AAC users to evaluate the usability 
of our phoneme predictive keyboard. We are inter-
ested in finding out if the potential keystroke sav-
ings can be translated into an actual keystroke 
savings and communication rate enhancement. In 
addition, we will analyze user’s errors in phoneme 
selection, which can be used to produce a more 
advanced auto-correction method.  

Second, we will explore how our prediction sys-
tem can be integrated into existing phoneme-based 
AAC systems rather than our reduced keyboard. In 
particular, we will focus on the REACH Sound-It-
Out Phonetic Keyboard™ (Schroeder, 2005), 
which uses a different phoneme set than our 
PHONICS set, and the PhonicStick™ (Black et al., 
2008), which has the same phoneme groupings as 
our keyboard. 

Finally, we will investigate how NLP techniques, 
such as the joint-multigram model (Bisani and 
Ney, 2008), can be applied to automatically gener-
ate orthographic spellings for OOV words. Our 
current system simply uses a <unk> placeholder 
for OOV words. While these words can still be 
spoken out by synthesizing their phoneme strings, 
it is potentially more beneficial to suggest actual 
spellings than to use such a placeholder. 
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