
Language Model Personalization for Improved Touchscreen Typing

Jiban Adhikary, Keith Vertanen

Michigan Technological University, USA
jiban@mtu.edu, vertanen@mtu.edu

Abstract
Touchscreen keyboards rely on language modeling to auto-
correct noisy typing and to offer word predictions. While lan-
guage models can be pre-trained on huge amounts of text, they
may fail to capture a user’s unique writing style. Using a
recently released email personalization dataset, we show im-
proved performance compared to a unigram cache by adapt-
ing to a user’s text via language models based on prediction
by partial match (PPM) and recurrent neural networks. On sim-
ulated noisy touchscreen typing of 44 users, our best model in-
creased keystroke savings by 9.9% relative and reduced word
error rate by 36% relative compared to a static background lan-
guage model.
Index Terms: language model personalization, human-
computer interaction, touchscreen typing

1. Introduction
When people type on a touchscreen mobile device, a language
model (LM) facilitates the input process by providing word pre-
dictions and auto-corrections. Typically, behind a text entry ap-
plication there is a generalized LM which works for every user.
These models are static and do not change with time. However,
every person has a unique style of writing. Moreover, while
writing, people tend to repeat the same word or even the same
phrase. As such, it is desirable to have a model that can change
and adapt to a user’s writing behaviour.

In this work, we investigate improving text entry perfor-
mance by using LMs that adapt to a person’s writing history. We
conduct simulations on a publicly available and time-ordered
dataset. We assume an ideal user of a touchscreen keyboard
with word predictions and auto-correct. We test with and with-
out introducing noise to the user’s touch locations. We adapt
various LMs based on a user’s past text and show performance
gains using word error rate (WER) and keystroke savings.

2. Related work
Past work [1, 2, 3] used adaptive LMs based on a unigram cache
[4, 5] for speech recognition. The prediction by partial match
(PPM) algorithm [6] has been used to provide text entry with
adaptive language modeling [1, 7]. Another approach is to train
an n-gram model on a user’s past text [8, 9]. Neural models have
been also used for personalization via caching [10, 11, 12], or
by fine-tuning the model’s parameters [13, 9].

Fowler et al. [3] explored LM adaptation on touchscreen
keyboard performance. They simulated a group of Enron em-
ployees typing emails in chronological order. The simulated
users provided sloppy touch input, but could make use of auto-
correct and word predictions. They showed a background LM

reduced typing WER from 38.4% to 5.7%. A personalized LM
using a unigram cache further reduced WER to 4.6%.

We used the recently released dataset1 that was used in
Fowler et al. [3] as a basis for our experiments. We improve
and extend this prior work in the following ways:

1. In addition to a unigram cache, we investigate adaptation via
an adaptive n-gram model based on the Prediction by Partial
Match (PPM) algorithm. We also investigate adaptation via
a Recurrent Neural Network Language Model (RNNLM). To
our knowledge, no work has shown the effectiveness of PPM
for personalization on a touchscreen keyboard.

2. We use character n-gram LMs instead of the word bigram LM
used by Fowler et al. [3]. This allows easier adaptation in the
face of novel words. We tested a (roughly) similar 6-gram
character LM, and also a longer-span 12-gram character LM.
We find conditioning on more previous context substantially
improves performance, but adaptation still provides further
gains despite our stronger background baseline.

3. Fowler et al. [3] primed each user’s model on their previous
30 days of email. We instead used 1520 words from each
user for priming and 1520 words for evaluation (see section
3). In the released dataset, users’ test set sizes varied from
3040 to 140K words (a factor of 3600). We opted for an
experimental design comparing algorithms on different users
but with the same amount of priming data. This allows for a
tighter comparison between different adaptation algorithms.
We believe this makes our results easier to interpret since our
results represent performance across a large set of users under
a consistent amount of priming and evaluation data. Further,
we tested models with no priming text, simulating expected
performance on, for example, a new device.

4. While Fowler et al. [3] showed word error rate results for
noisy input, we also provide keystroke savings for noisy in-
put. This helps us understand the degree adaptation might
impact the effectiveness of a keyboard’s word predictions.

3. Dataset and Background Models
Initially we hoped to compare more closely with Fowler et
al. [3], but this was not possible for a number of reasons. The
original dataset used in Fowler et al. [3] contained a devel-
opment and test set with 45 users in each, but one user was
dropped in the released dataset for privacy reasons. The lan-
guage models, word vocabulary, and the scripts used to pre-
process the raw text were also not released.

We created our own processed version of the raw text for
the 44 users. We have released our processed text to facilitate

1https://github.com/google-research-datasets/
EnronPersonalizationValidation

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1344 10.21437/Interspeech.2023-276



future research2. As in [3], we stripped non-alphabetical charac-
ters except apostrophe and converted to lowercase. We did not
remove apostrophes as in [3] since contractions are common in
emails and their removal could be problematic for future work
using, for example, large pre-trained language models.

For each of the 45 test users, we limited each user’s text
to 3040 words (the amount of the user with the least text). We
split this into two equal halves of 1520 words. The first half we
denote as the seed set and the second half the test set. In our
experiments, we simulated writing of the test set using either
a flat start model that had no knowledge of the seed set, or a
primed model that first updated its state based on the seed set.

Our background language model was the large version of
the character 12-gram LM released by Vertanen and Kristens-
son [14]. This model was trained on 504 M words from blog
posts, forum, and twitter, and has 40.9 M character n-grams.
For comparison, Fowler et al. [3] used a word bigram having
8.5 M word n-grams. We also tested a 6-gram character LM
which is roughly equivalent to a bigram word LM (since a word
in English averages 5 characters). The 6-gram character LM
was trained on the same data and had 3.6 M n-grams.

4. Experimental Setup and Models
We simulated touch input on a smartphone keyboard with word
predictions that appear above the keyboard. An ideal user pro-
vided the touch input for each sentence character-by-character,
observing the suggestion slots and selecting their desired word
if it appears. The keyboard offered three suggestions, two word
completion predictions based on the user’s typing thus far, and
the literal text typed (i.e. the letter sequence nearest to the sim-
ulated touch locations). Before any input for a word, the key-
board offered the three most probable words given the prior text.

Evaluation metrics. Our simulated user did not use the
backspace key. Thus, in the case of noisy input, the keyboard
might not offer a user’s desired word. In such cases, we assume
the user selected the most probable word. We measured how
often this happened by reporting word error rate (WER) of the
user’s final text versus the reference text. Word predictions can
speed writing by allowing a user to not type every character in
a word. We measured this via keystroke savings (KS). KS is
the percentage reduction in keys pressed compared to letter-by-
letter text entry. We assumed selecting a prediction required one
keystroke and added any following space.

Keyboard. We used a QWERTY keyboard similar to [3]
except we added an apostrophe key to the right of the L key.
Keys had a width of 6.2 mm and a height of 9.4 mm. We as-
sumed the user tapped the center of each desired key with op-
tional Gaussian noise. We set the standard deviation of the noise
to 2.0 mm and 1.9 mm in the x- and y-dimensions respectively.
This was similar to the noise in [3] which was based on [15].

Decoder. To provide auto-correct and word predictions, we
used the VelociTap decoder [16]. For the current touch sequence
of a word, the decoder generates an n-best list of character se-
quence hypotheses according to a touch model and a character
n-gram LM. The touch model is based on 2D Gaussians cen-
tered at each key. The decoder’s free parameters were tuned on
thousands of sentences of smartphone touch data as described
in [17]. For complete details of the decoder, see [17].

We chose a character LM instead of a word LM to pro-
vide more granularity and efficient pruning during the decoder’s
search. Perhaps more importantly, in our problem of adapting to

2https://osf.io/45p3j/

a user’s writing, a character LM allows novel out-of-vocabulary
words to be simply added to the word list used to produce word
completion predictions. The background and the adaptive LMs
are then immediately able to make sensible probability esti-
mates for these newly added words based on any similar charac-
ter patterns previously seen by the models. A word LM would
have a harder time as it would start with no n-grams containing
the novel word, so predictions (especially conditioned on prior
text) would suffer from sparsity more than a character LM.

Word predictions. The decoder’s best word prefix hy-
potheses are used to search for the most probable full words in
a 168 K word list (similar in size to [3]). We used the most fre-
quent words in billions of words of web text that also appeared
in a large human-edited dictionary. Our word list is provided
in our released dataset. During a user’s simulation, any out-
of-vocabulary word typed was added to the vocabulary for the
remainder of that user’s simulation. This allowed the new word
to be suggested by the keyboard from that point on.

The decoder generated a list of the 100 most probable word
predictions based on a user’s previously written text. We op-
tionally rescored this list with one or more adaptive models.
We opted for this rescoring approach since using an LM such as
an RNNLM directly in the decoder’s search can be expensive
[18]. The relative contribution of each adaptive model and the
background model was controlled by a set of mixture weights.

We tested three adaptive models:
1. Unigram cache. This method uses the frequency of words

encountered thus far to estimate a unigram LM [4]. Given
the small size of our test set, we did not limit the size of the
cache. We also did not use an exponentially decaying cache
as it performed similar to a unigram cache in [3].

2. Prediction by partial matching (PPM). PPM was originally
designed as a text compression algorithm [19]. It is sim-
ilar to a smoothed n-gram model [20] but is more amend-
able to updating during use due to the model’s storage of
explicit counts. We adapted the PPM implementation from
Google3 which was implemented following the algorithm
used in Dasher [7]. We tested PPM orders of 6 and 12. Note
that a PPM model of order n looks at the n previous symbols,
unlike an n-gram that looks at the previous n− 1 symbols.

3. Recurrent neural network language model. We incorpo-
rated an RNNLM to test whether the previous adaptive mod-
els provided gains over a strong baseline; ensembling an n-
gram LM and an RNNLM has been shown to perform better
than either in isolation [21]. We also wanted to see if the hid-
den state of the RNNLM could help adapt to previous text
(i.e. without updating parameters via backpropagation).

We trained a character RNNLM [22] with LSTM units on
the same text as the background LM. We optimized hyper-
parameters via a grid search optimizing for perplexity. We
searched over: character embedding size [32, 64], LSTM units
[128, 256, 384, 512], hidden layers [1, 2], learning rate [0.1,
0.01, 0.001], and dropout rate [0.5, 0.55, 0.6]. The final
RNNLM had an embedding size of 64, 512 LSTMs, one hidden
layer, and a dropout rate of 0.55. We used the Adam optimizer.

Simulation mixture weights. We conducted two experi-
ments. In the first experiment, we simulated typing without any
spatial noise. In the second experiment, we added spatial noise
to the simulated touches. For both experiments, we optimized
different mixture weights to combine the LM probabilities from

3https://github.com/google-research/
google-research/tree/master/jslm

1345



Table 1: Mixture weights of different model combinations. BG
denotes the background 12-gram character LM. Weights appear
in the same order as the components in each ensemble’s name.

Model Weights

BG + Unigram 0.50, 0.50
BG + RNNLM 0.45, 0.55
BG + PPM-12 0.75, 0.25
BG + Unigram + RNNLM 0.30, 0.30, 0.40
BG + Unigram + PPM-12 0.75, 0.05, 0.20
BG + PPM-12 + RNNLM 0.40, 0.20, 0.40
BG + Unigram + PPM-12 + RNNLM 0.30, 0.25, 0.15, 0.30

Table 2: Model performance (± 95% CI) in Experiment 1 on
simulated touch data without added spatial noise.

Flat start Primed

Model KS (%) KS (%)

Background (6-gram) 39.3± 0.3
Background (12-gram) 45.6± 0.3
+ Unigram 46.3± 0.3 46.7± 0.3
+ RNNLM 46.8± 0.3 46.9± 0.3
+ PPM-6 47.4± 0.3 48.2± 0.3
+ PPM-12 47.7± 0.3 48.6± 0.3
+ Unigram + RNNLM 47.3± 0.3 47.6± 0.3
+ Unigram + PPM-12 47.7± 0.3 48.6± 0.3
+ PPM-12 + RNNLM 48.7± 0.3 49.5± 0.3
+ Unigram + PPM-12 + RNNLM 48.7± 0.3 49.4± 0.3

the adaptive models and the background 12-gram character LM.
In this case, we optimized with respect to keystroke savings on
six users’ data from the development set in Fowler. Table 1
shows the tuned values we found for each model ensemble.

Optimizing the mixture weights using the text from all the
45 users in the development set was too computationally expen-
sive especially for the models with multiple mixture weights.
While it is possible slightly better mixture weights might have
been found tuning on all 45 users, in our tests with one con-
figuration (background + PPM-12), we found optimizing on 12
users resulted in very similar mixture weights and keystroke
savings compared to optimizing on only six users.

5. Results
Experiment 1. We first simulated typing without any spatial
noise. Table 2 shows results of our two background LMs and all
combinations of rescoring with the adaptive models. Keystroke
savings using just the 6-gram LM was 39.3% but was substan-
tially higher at 45.6% using the 12-gram LM. Comparing the
left and right columns, we see that all models benefited from
priming on a user’s data prior to evaluation. However, priming
only afforded the RNNLM a small improvement of 0.1%.

In isolation, all adaptive models improved keystroke sav-
ings with PPM-12 providing the biggest gain of 3.0% in the
primed condition. Our unigram cache did not provide as big
an improvement as in [3]. We suspect this is due to the 12-
gram LM conditioning on more previous text. Combining mod-
els provided additive gains with the exception of combining the
unigram cache with PPM-12. We think the ability to condition
on previous words and better smoothing of PPM-12 allows it to
subsume the functionality of the unigram cache. Our best model
PPM-12 + RNNLM provided a keystroke savings increase of

Table 3: Model performance (± 95% CI) in Experiment 2.
Models were primed and spatial noise was added.

Model KS (%) WER (%)

Background (6-gram) 37.3± 0.3 2.02± 0.08
Background (12-gram) 43.6± 0.3 2.17± 0.09
+ Unigram 45.3± 0.5 1.66± 0.06
+ RNNLM 45.2± 0.3 1.91± 0.08
+ PPM-6 46.5± 0.3 1.37± 0.06
+ PPM-12 46.9± 0.3 1.36± 0.06
+ Unigram + RNNLM 46.4± 0.3 1.66± 0.07
+ Unigram + PPM-12 47.0± 0.3 1.41± 0.05
+ PPM-12 + RNNLM 47.9± 0.3 1.39± 0.06
+ Unigram + PPM-12 + RNNLM 47.8± 0.3 1.40± 0.06

3.9% on the primed data compared to the background 12-gram.
Experiment 2. Next, we added spatial noise to the simu-

lated touches. Table 3 shows the results for the primed mod-
els. Comparing Table 3 to Table 2, we see keystroke savings
dropped around 2% due to the noise. But similar to noise-
less input, keystroke savings improved when one or more adap-
tive models was used. As without noise, PPM-12 provided the
biggest gain. Combining PPM-12 with the RNNLM improved
performance, but as with no noise the unigram cache provided
no gain in conjunction with PPM-12.

Our best combination of PPM-12 + RNNLM improved
keystroke savings by 4.3% and reduced the WER of final text by
0.78% compared to the background 12-gram. Without an LM,
the WER on the noisy touch data was 39.3% (±0.27% 95% CI).
Thus, it appears that the gains of the adaptive models are robust
to the typical noise inherent in touchscreen keyboard input.

We compared the per-user performance of the background
model and the ensemble of all three models with and without
priming (Figure 1). For all users, the primed ensemble had a
higher keystroke savings. For 37 out of the 44 users, the ensem-
ble without priming outperformed the background LM.

Adding in PPM-12 did increase computation and memory
requirements. For the 12-gram baseline model, per word de-
code time was 180 ms versus 270 ms for the 12-gram + PPM-
12 model. The 12-gram baseline consumed 8.8 GB of memory
versus 9.5 GB for the 12-gram + PPM-12 model. The maximum
memory consumption of the other models and the combinations
ranged from 8.8 GB to 10.6 GB with the 12-gram background
model being responsible for most of the memory footprint.

6. Discussion and Limitations
In this work, we showed how three adaptive models – namely, a
unigram cache, PPM, and an RNNLM – can be used to provide
better word predictions than a static background LM. While pre-
vious work has investigated a unigram cache for LM adaptation
with or without introduced spatial noise, models like PPM and
RNNLM have not been tested on such input. We found combin-
ing PPM and an RNNLM outperformed a unigram cache and
should be considered for use in touchscreen keyboards.

A PPM model can be queried and its counts can be updated
computationally efficiently. Our results suggest that even de-
vices with modest hardware resources can use PPM to improve
word predictions. We found even a fairly low order PPM model
can be used without losing significant performance. For ex-
ample, with spatial noise and priming, adaptation using PPM-6
reduced keystroke savings by only 0.4% compared to PPM-12.
From our observation, the adaptation process shined with out-

1346



● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

0

5

10

15

20

25

30

35

40

45

50

55

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

User

K
e

y
s
tr

o
k
e

 s
a

v
in

g
s
 (

K
S

%
)

● Background LM

Ensemble (flat)

Ensemble (primed)

Figure 1: The keystroke savings on noisy touch data for each user in three different settings. Ensemble (flat) represents the combination
of background LM, unigram cache, RNNLM, and PPM-12 with a flat start. Ensemble (primed) represents when the models were primed
with the seed text. Users are sorted according to the keystroke savings using the 12-gram background LM.

of-vocabulary words. Although the unigram cache kept track
of new unseen words, PPM-12 worked better than the unigram
cache which only considers how often a word has been seen
but not in the contexts in which the word commonly occurs
(e.g. predicting a user’s name after “Best regards,”).

We tested our models on text written by Enron employees
that were most likely typed on desktop keyboards. The style of
text written on touchscreen keyboards may differ to some de-
gree. The text may also contain typos or spelling errors that may
not reflect a user’s true intent. It would be interesting to validate
our finding on text written on actual mobile devices. However,
sourcing such data would be difficult for privacy reasons, and
to our knowledge no such dataset exists. We believe the Enron
personalization dataset by Fowler et al. [3] is currently the best
available choice.

Frequently, a touchscreen keyboard user may touch neigh-
boring keys instead of their intended key. We simulated this
aspect by adding Gaussian noise to the target key’s center. A
higher fidelity simulation might sample touch locations from
observations from actual touchscreen typing. A more advanced
simulation might also insert extra erroneous taps or delete taps
for some letters to simulate these events which do sometimes
occur in real-world touchscreen input.

We tested our models by simulating the writing of around
3000 words. The behavior of the models for substantially more
text needs further investigation. For example, models such as
PPM may require pruning as more and more text are fed to it.
This might be necessary to maintain predictive performance if
a user’s writing style changes over time. Pruning might also be
necessary to control the memory required by the model.

We tested an RNNLM using persistence in its hidden states
to model a user’s previous writing. Judging by the difference
between our primed and flat start variants, this did not appear
to provide strong adaptation ability. It might be more advanta-
geous to periodically update the network’s parameters via back-
propagating based on a user’s recently written text or by fine-
tuning a large pre-trained language model (e.g. GPT-2 [23]).
However on mobile devices, such large language models may
be too expensive to use on-device (as might be required for pri-
vacy). Additionally, such models can suffer from latency issues
during inference [8]. Our work here has shown that PPM can
offer a simple, compute- and memory-efficient approach to pro-
vide effective language model personalization.

It would be interesting to compare our simulated touch-
screen keyboard against an off-the-shelf keyboard such as the

iPhone keyboard or Android Gboard. But this would be chal-
lenging for a number of reasons. First, the language models
these keyboards use are not public. We do not know, and prob-
ably cannot control, their vocab size, language model type, or
data they were trained on. Second, to use these keyboards in ex-
periments would require programmatic access to the underlying
engine, including the ability to reset any adaptation algorithm.

Our results are based on observing the improvements
in keystroke savings and word error rate of an ideal user
who makes perfect use of a keyboard’s predictions. Further,
the simulated user made no use of other correction features
(e.g. backspace). Whether gains would translate to real-world
text entry will require a longitudinal user study in which each
participant writes a substantial amount of text.

7. Conclusion
In this paper, we made use of a newly released data set to sim-
ulate the entry of a large number of email messages by a set
of 44 users on a touchscreen keyboard. We simulated noise in-
dicative of typing on a mobile device. We showed the effects of
various adaptive language models on correcting an ideal user’s
noisy input and personalizing the models based on the user’s
past writing pattern. To facilitate future research, we have made
our text data, word list, and language models available.

Our results show personalization can improve touchscreen
keyboard performance. With noiseless touch input, the best per-
sonalized model achieved a 8.6% relative increase in keystroke
savings compared to using only a static 12-gram character LM.
With noisy touch input, we achieved a slightly higher 9.9% rel-
ative increase in keystroke savings. Further, we found person-
alization reduced how often a typical keyboard with three pre-
diction slots will fail to provide a user’s intended text. The final
word error rate of the simulated user was reduced by 36% rel-
ative on noisy touchscreen input. In a real keyboard interface,
this increase in keystroke savings and lower prediction failure
rate should help users write faster without requiring that a user
resort to backspacing or other correction features.

8. Acknowledgements
This material is based upon work supported by the NSF un-
der Grant No. IIS-1750193. We thank Brian Roark and Shumin
Zhai from Google for their work on releasing the Enron person-
alization dataset.

1347



9. References
[1] K. Tanaka-ishii, “Word-Based Predictive Text Entry Using

Adaptive Language Models,” Natural Language Engineering,
vol. 13, no. 1, p. 51–74, Mar. 2007. [Online]. Available:
https://doi.org/10.1017/S1351324905004080

[2] P. R. Clarkson and A. J. Robinson, “Language Model Adaptation
Using Mixtures and an Exponentially Decaying Cache,” in IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing, vol. 2, 1997, pp. 799–802.

[3] A. Fowler, K. Partridge, C. Chelba, X. Bi, T. Ouyang, and
S. Zhai, “Effects of language modeling and its personalization on
touchscreen typing performance,” in Proceedings of the SIGCHI
Conference on Human factors in Computing Systems, ser. CHI
’15. New York, NY, USA: ACM, 2015, pp. 649–658. [Online].
Available: http://doi.acm.org/10.1145/2702123.2702503

[4] R. Kuhn and R. De Mori, “Cache-based natural language model
for speech recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, pp. 570–583, 07 1990.

[5] R. Kuhn, “Speech Recognition and the Frequency of Recently
Used Words: A Modified Markov Model for Natural Language,”
in Proceedings of the 12th Conference on Computational
Linguistics - Volume 1, ser. COLING ’88. USA: Association
for Computational Linguistics, 1988, p. 348–350. [Online].
Available: https://doi.org/10.3115/991635.991706

[6] T. C. Bell, I. H. Witten, and J. G. Cleary, Text Compression.
Englewood Cliffs, NJ, USA: Prentice Hall, 1990. [Online].
Available: https://nla.gov.au/nla.cat-vn1413295

[7] D. J. Ward, A. F. Blackwell, and D. J. C. MacKay,
“Dasher – a Data Entry Interface Using Continuous Gestures
and Language Models,” in Proceedings of the 13th Annual
ACM Symposium on User Interface Software and Technology,
ser. UIST ’00. New York, NY, USA: Association for
Computing Machinery, 2000, p. 129–137. [Online]. Available:
https://doi.org/10.1145/354401.354427

[8] M. X. Chen, B. N. Lee, G. Bansal, Y. Cao, S. Zhang, J. Lu, J. Tsay,
Y. Wang, A. M. Dai, Z. Chen, T. Sohn, and Y. Wu, Gmail Smart
Compose: Real-Time Assisted Writing. New York, NY, USA:
Association for Computing Machinery, 2019, p. 2287–2295.
[Online]. Available: https://doi.org/10.1145/3292500.3330723

[9] M. King and P. Cook, “Evaluating Approaches to Personalizing
Language Models,” in Proceedings of the 12th Language
Resources and Evaluation Conference. Marseille, France:
European Language Resources Association, May 2020, pp.
2461–2469. [Online]. Available: https://aclanthology.org/2020.
lrec-1.299

[10] E. Grave, A. Joulin, and N. Usunier, “Improving Neural
Language Models with a Continuous Cache,” in 5th International
Conference on Learning Representations, ICLR 2017, April
24-26, 2017. OpenReview.net, 2017. [Online]. Available:
https://openreview.net/forum?id=B184E5qee

[11] K. Li, H. Xu, Y. Wang, D. Povey, and S. Khudanpur, “Recurrent
Neural Network Language Model Adaptation for Conversational
Speech Recognition,” in Proceedings of Interspeech 2018, 2018,
pp. 3373–3377. [Online]. Available: http://dx.doi.org/10.21437/
Interspeech.2018-1413

[12] E. Grave, M. M. Cisse, and A. Joulin, “Unbounded cache model
for online language modeling with open vocabulary,” Advances
in Neural Information Processing Systems, 2017. [Online].
Available: https://arxiv.org/abs/1711.02604

[13] K. Li, Z. Liu, T. He, H. Huang, F. Peng, D. Povey, and S. Khu-
danpur, “An Empirical Study of Transformer-Based Neural Lan-
guage Model Adaptation,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2020), 2020,
pp. 7934–7938.

[14] K. Vertanen and P. O. Kristensson, “Mining, Analyzing, and Mod-
eling Text Written on Mobile Devices,” Natural Language Engi-
neering, vol. 27, pp. 1–33, 2021.

[15] S. Azenkot and S. Zhai, “Touch behavior with different
postures on soft smartphone keyboards,” in Proceedings
of the 14th International Conference on Human-Computer
Interaction with Mobile Devices and Services, ser. MobileHCI
’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 251–260. [Online]. Available: https:
//doi.org/10.1145/2371574.2371612

[16] K. Vertanen, H. Memmi, J. Emge, S. Reyal, and P. O.
Kristensson, “VelociTap: Investigating Fast Mobile Text Entry
Using Sentence-Based Decoding of Touchscreen Keyboard
Input,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’15. New York,
NY, USA: ACM, 2015, pp. 659–668. [Online]. Available:
http://doi.acm.org/10.1145/2702123.2702135

[17] K. Vertanen, Probabilistic Text Entry-Case Study 3, 1st ed.
New York, NY, USA: Association for Computing Machinery,
2021, pp. 277–320. [Online]. Available: https://doi.org/10.1145/
3447404.3447420

[18] J. Adhikary, J. Berger, and K. Vertanen, “Accelerating Text Com-
munication via Abbreviated Sentence Input,” in Proceedings of
the Joint Conference of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, 2021, pp.
6574–6588.

[19] J. Cleary and I. Witten, “Data Compression Using Adaptive Cod-
ing and Partial String Matching,” IEEE Transactions on Commu-
nications, vol. 32, no. 4, pp. 396–402, 1984.

[20] P. J. Cowans, “Probabilistic document modelling,” Ph.D. disserta-
tion, University of Cambridge, 2006.

[21] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. Cer-
nockỳ, “Empirical evaluation and combination of advanced lan-
guage modeling techniques,” in Proceedings of the International
Conference on Spoken Language Processing, 2011, pp. 605–608.

[22] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khu-
danpur, “Recurrent Neural Network based Language Model,” in
Proceedings of the International Conference on Spoken Language
Processing, vol. 2, 2010, pp. 1045–1048.

[23] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, “Language models are unsupervised multitask
learners,” 2018. [Online]. Available: https://d4mucfpksywv.
cloudfront.net/better-language-models/language-models.pdf

1348


