
COMBINING OPEN VOCABULARY RECOGNITION AND WORD CONFUSION NETWORKS

Keith Vertanen

University of Cambridge, Cavendish Laboratory
Madingley Road, Cambridge, CB3 0HE, UK

kv227@cam.ac.uk

ABSTRACT
A limitation of most speech recognizers is that they only rec-

ognize words from a fixed vocabulary. In this paper, we ex-

plore a technique for addressing this deficiency using auto-

matically derived units made up of letters and phones. We

show how these units can be used for letter-to-phone conver-

sion and open-vocabulary recognition. We further show how

these units can be merged to form novel words while main-

taining a word lattice structure. This allows creation of a word

confusion network containing both in- and out-of-vocabulary

(OOV) words. Experiments show these open vocabulary con-

fusion networks improve recognition accuracy. They also al-

low open vocabulary recognition to be used in concert with a

convenient confusion network result representation.

Index Terms— Speech recognition

1. INTRODUCTION

Even if a speech recognizer’s vocabulary is large, users may

still say words not in the recognizer’s vocabulary: proper

names, technical jargon, or newly coined words, for example.

A recognizer with a closed-vocabulary will always get these

OOV words wrong. Using a more flexible, open-vocabulary

recognizer, it is possible to make language-grounded hypothe-

ses about novel words. In this work, we build and extend such

an open-vocabulary recognizer. Using the approach in [1], we

first learn a set of pairings between the written, grapheme se-

quences of a language and its spoken, phoneme sequences.

For example, in English some likely pairings are:

Graphemes
Phonemes

(
ing
ih ng

) (
ation
ey sh ah n

) (
sch
sh

)

As in [1], we refer to these pairings as graphones. Graphones

are learned from a pronunciation dictionary and added along-

side the recognizer’s normal vocabulary. A language model

(LM) is trained on text where each OOV is replaced by its

most likely graphone sequence. This “word+graphone” LM

is used for recognition, returning both words and graphones.

Graphones are then combined to form novel recognized words.

After showing our graphone-based open-vocabulary rec-

ognizer provides state-of-the-art performance, we extend this

open-vocabulary technique by merging graphones into com-

plete OOV words while maintaining a word lattice structure.

A confusion network (CN) is then created containing both in-

and out-of-vocabulary words. This CN not only further re-

duces word error rate (WER), but also provides a represen-

tation in which recognized words have both posterior proba-

bilities and a set of competing word hypotheses. A possible

application of such a representation might be a dictation inter-

face which allowed open-vocabulary recognition and where

in-vocabulary and out-of-vocabulary alternatives to the ini-

tially recognized words were presented using the CN.

In this paper, first we describe training of English gra-

phones and give letter-to-phone conversion results. Second,

we train word+graphone LMs and perform recognition ex-

periments using these LMs. Third, we give an algorithm that

merges graphones into words while maintaining a word lat-

tice structure. Finally, we show confusion networks created

from the merged lattices reduce open-vocabulary WER.

2. GRAPHONES

Before building the word+graphone LM used during recog-

nition, a set of graphones and their probabilities is inferred

using the joint multigram model [2]. A graphone inventory

{G}, is a set of units gi, each a pairing of letters/phones:

gi =
(

�1, �2, ..., �j

ρ1, ρ2, ..., ρk

)

Graphones have some minimum and maximum number of

letters and phones. We used the same range for both letters

and phones and denote a model by its range (e.g. 0-2). We

found the inventory {G} by generating all ways every dictio-

nary word can be split into letter/phone chunks subject to the

length restrictions. If C(gi) is the count of times gi appeared

in all segmentations, an initial unigram estimate is:

P (gi) =
C(gi)∑

gj∈{G} C(gj)
(1)

Graphones in a sequence S of length m are assumed to be

independent of each other:

P (S = g1, g2, ..., gm|m) =
m∏

i=1

P (gi) (2)

43251-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

0-1 0-2 0-3 1-2 1-3

2-gram 18.76 10.19 8.70 10.84 9.83

3-gram 10.22 7.67 8.40 9.03 9.59

4-gram 7.61 7.55 8.40 8.97 9.58

5-gram 7.00 7.55 8.41 8.95 9.55

6-gram 6.86 7.54 8.39 8.96 9.55

7-gram 6.83 7.55 8.40 8.96 9.55

Table 1. PER of letter-to-phone conversion on CMU dev set,

varying graphone size (columns) and LM size (rows).

Smoothing method non-interpolated interpolated

PER ± 1 sd PER ± 1 sd

Witten–Bell 8.00 ± 0.13 7.68 ± 0.12

absolute discounting 11.71 ± 0.14 7.52 ± 0.12

Kneser–Ney 8.62 ± 0.13 6.84 ± 0.12

Table 2. Effect of smoothing and interpolation (6-gram 0-1).

The likelihood of word W with letters L and phones P
is the sum over all sequences {S} where {S} contains all

graphone sequences which exactly produce L and P :

L (W) =
∑

S∈{S}
P (S) (3)

The most likely sequence S∗ for W is:

S∗ = argmaxS∈{S}P (S) (4)

In Viterbi-style training, S∗ is found for each word, cre-

ating new counts which are used to reestimate the unigram

probabilities. Graphones are pruned if their count falls below

some threshold. Instead of making a hard decision about the

segmentation of each training example, a soft decision can be

made instead. This yields an expectation maximization (EM)

formulation, see [2] for details.

To model dependency between graphones, the trained gra-

phones are used to create a n-gram LM where the language

consists of a “word” for each graphone. The most likely gra-

phone sequence is found for each dictionary word using (4)

and used as training text for a graphone LM. Using this LM,

a new segmentation of the dictionary is found, a new LM is

trained, and the process repeated until convergence. As sug-

gested by [3], the LM-span is iteratively increased, first train-

ing a 2-gram to convergence, then a 3-gram, and so on.

Using the graphone LM, a word’s most likely phones can

be found from its letters (and vice-versa). This is done by

finding all graphones sequences consistent with the known

symbols and choosing the most likely sequence given the LM.

A special end-of-word (EOW) letter can be used to help seg-

ment streams of graphones into complete OOV words. This is

done by simply adding the EOW letter (denoted by •) to the

end of every dictionary word and training as usual.

Iter. LM LM cutoffs EOW Training PER ± 1 sd

yes 0 yes EM 6.84 ± 0.12

no 0 yes EM 6.86 ± 0.12

yes 1/1/1/2/2/2 yes EM 7.30 ± 0.12

yes 0 no EM 6.66 ± 0.12

yes 0 yes Viterbi 6.85 ± 0.12

Table 3. Effect of iterative LM training, LM cutoffs, end-of-

word letter, and graphone training method (6-gram 0-1).

2.1. Letter-to-phone experiments

To recognize OOV words, our model needs to make accurate

phonetic transcriptions of OOV words. So we first describe

the ways in which we achieved good letter-to-phone conver-

sion using graphones. Our experiments used the CMU dictio-

nary, removing words with letters other than A–Z and apos-

trophe. We retained multiple pronunciations per word. We

randomly split into a 80% training set, 10% development test

set, and 10% evaluation test set. Evaluation used the phone

error rate (PER), scoring a word’s PER as the minimum of

any of its pronunciation variants. Throughout, we report one-

sigma confidence intervals using the bootstrap method [4].

We tested a variety of graphone and LM sizes (table 1). 0

letters/phone models outperformed those with a 1 letter/phone

minimum. As in [1, 3], small graphones with long-span LMs

proved best. Gains were small beyond 6-grams, so we chose

a 6-gram 0-1 model for letter-to-phone conversion. Testing

different LM smoothing methods (table 2), we found interpo-

lation helped and (original) Kneser–Ney performed the best.

We found iterative LM training did not substantially re-

duce PER (table 3). Using no LM count cutoffs was helpful.

Using the EOW letter hurt performance, so we will add EOW

only when we must find word boundaries. Training graphones

with EM was only slightly better than Viterbi. On the unseen

eval set, we had a PER of 6.64% ± 0.08%. This is similar to

other CMU letter-to-phone results (5.9% [3] and 7.0% [5]).

3. WORD+GRAPHONE RECOGNITION

We now create a word+graphone LM (overview in figure 1).

We did this slightly different than previous work (e.g. [1]), us-

ing a two-step process using two different graphone models.

First, given a corpus of LM training text and an in-vocab word

list, phones are found for each OOV. If available, an OOV’s

phones are taken from CMU. Otherwise, phones are found

with our best letter-to-phone model (6-gram 0-1, no EOW).

Next, the training text’s OOVs are replaced by their most

likely graphones subject to the previously found phones. This

replacement uses a model different from the one used for

letter-to-phone conversion. As we’ll see, different sized gra-

phones provide different WER. Finally, a word+graphone LM

is trained using the text with OOVs replaced by graphones.

4326

Fig. 1. Overview of the training of a word+graphone LM.

3.1. Best path recognition experiments

For recognition, we used HTK v3.4, HDecode, and the acous-

tic model recipe from [6]. We trained cross-word triphones

on WSJ/TIMIT (218 hours), using 12 MFCCs plus deltas and

delta-deltas, 32 Gaussians/state, and 10K tied-states. Decod-

ing was in less than 6xRT on a 3GHz machine. We trained

baseline and word+graphone LMs on CSR-III (222M words),

using the top 20K/64K vocab and interpolated modified Kneser-

Ney with cutoffs of 1/1/3. We used a 2-gram for decoding,

rescoring lattices with a 3-gram. We report results on the

combined WSJ0 and WSJ1 20K-vocab dev sets (si dt 20,

894 sentences, 2.3% OOV at 20K vocab, 0.3% at 64K).

We used a word+graphone LM for recognition, produc-

ing a word lattice. We found the best lattice path, yielding a

sequence of words and graphones. We converted graphones

to their constituent letters, merging adjacent graphones and

separating into complete OOV words using the EOW letter.

Using 20K in-vocab words, the word+graphone LMs re-

duced WER by 21% relative (best path column, table 4). This

compares favorabley with the 15% reduction reported in [1]

on a similar task (however we used 31K graphones compared

to 12K in [1]). Using LMs with longer graphones reduced

WER. Using 64K in-vocab words, gains were small, proba-

bly due to the low 0.3% OOV rate. While we thought our

new two-step process of finding the best phones then aligning

final graphones would be better, a test of directly converting

OOVs with a 1-5 model yielded the same WER.

4. OPEN VOCABULARY CONFUSION NETWORKS

A confusion network (CN) is a compact representation of

recognition results in which competing word hypotheses and

their posterior probabilities appear in time-ordered sets [7].

CNs are built using words’ time/phonetic overlap in a recog-

nizer’s lattice output. The CN’s best or consensus hypothesis,

is the highest probability hop in each set.

Model Grap- Best path Conf net

hones WER ± 1 sd WER ± 1 sd

20K baseline - 11.22 ± 0.40 11.01 ± 0.39

20K + 1-3 graphone 9K 9.77 ± 0.36 9.47 ± 0.35

20K + 1-4 graphone 19K 9.19 ± 0.34 9.01 ± 0.34

20K + 1-5 graphone 28K 8.97 ± 0.34 8.79 ± 0.33

20K + 1-6 graphone 31K 8.88 ± 0.33 8.70 ± 0.33

64K baseline - 8.64 ± 0.33 8.30 ± 0.32

64K + 1-3 graphone 9K 8.74 ± 0.33 8.57 ± 0.33

64K + 1-4 graphone 19K 8.59 ± 0.32 8.50 ± 0.32

64K + 1-5 graphone 26K 8.55 ± 0.33 8.40 ± 0.32

64K + 1-6 graphone 29K 8.49 ± 0.33 8.35 ± 0.32

Table 4. WER of baseline and word+graphone models in best

path and confusion network experiments on si dt 20.

To build a CN containing OOVs, the graphones in a recog-

nition lattice (figure 2a) must be merged into full words. In an

iterative process, a graphone node without the EOW letter is

selected. For every graphone following this node, a new node

is created, concatenating the two nodes’ letters and phones.

Edges are created to/from the new node, maintaining the orig-

inal lattice paths and scores (see algorithm 1 for details). The

next node without EOW is selected, and the process contin-

ues. Upon completion, the lattice contains full OOV words

with known pronunciations (figure 2b). An open vocabulary

confusion network (OVCN) is created using a standard algo-

rithm [7] which builds a CN from the lattice (figure 2c).

Algorithm 1 can be costly as it creates a node for every

path between the chosen starting graphone and all reachable

ending graphones. An approximate search is used in which a

partially merged OOV word is pruned if its average per letter

combined acoustic and LM score becomes too unlikely com-

pared to a successfully merged OOV. The pruning is applied

Fig. 2. a) Lattice before OOV merging, b) lattice after merg-

ing, c) open vocabulary confusion network.

4327

based on the best, completely merged OOV whose start time

is close to the partial OOV’s start time. This helps insure good

OOVs are obtained for the different lattice time regions.

4.1. Confusion network recognition experiments

We found the consensus hypotheses of OVCNs made small,

but consistent WER gains over best-path results of a word+

graphone LM (table 4). Compared with the baseline CN, the

20K OVCN improved WER up to 21% relative. However, the

64K OVCN never improved upon the baseline CN.

To investigate performance at higher OOV rates, we used

utterances collected in prior work [8]. This consisted of novices

reading WSJ Spoke 2 sentences (Eval, 2016 sentences, 6.0%

OOV at 20K, 1.9% at 64K). On this harder test set, OVCNs

continued to provide small gains over using a best-path result

(table 5). Compared to the baseline CN, WER was reduced

by 27% relative at 20K and 4% at 64K.

Looking at the errors types in table 5, about half the gain

of word+graphone recognition was by reducing insertions.

An informal comparison showed that OOV models often con-

solidated difficult utterance parts into one-word OOVs rather

than multiple, short and possibly erroneous in-vocab words.

5. CONCLUSIONS

We described a graphone model consisting of chunks of let-

ters and phones. We used this model to train a word+gra-

N = lattice nodes, words/graphones ending at a time

E = lattice edges, with acoustic and LM scores

B = all nodes that are graphones without EOW letter

while B not empty do
b = some node from B
for each child c of b do

Create new node n where n:

Ends at time of node c
Concatenation of letters/phones in b and c

for each child d of c do
Create edge n→d with same score as c→d

for each ancestor a of b do
Create edge from a→n with sum of scores

of edges a→b and b→c

if n does not have end letter then
Add n to B

Remove all edges to and from b, delete b
Remove all nodes no longer on any path through lattice

Algorithm 1: Merging graphones in a word lattice.

Model Del Sub Ins WER ± 1 sd

20K base, best path 1.1 14.4 5.0 20.49 ± 0.41

20K base, CN 0.9 14.3 5.1 20.32 ± 0.41

20K + 1-5, best path 1.3 11.5 2.4 15.19 ± 0.35

20K + 1-5, OVCN 1.2 11.2 2.4 14.83 ± 0.34

64K base, best path 1.1 11.7 2.9 15.69 ± 0.35

64K base, CN 1.0 11.5 2.9 15.39 ± 0.34

64K + 1-5, best path 1.2 11.2 2.6 14.96 ± 0.34

64K + 1-5, OVCN 1.1 11.1 2.5 14.72 ± 0.33

Table 5. Breakdown of types of errors made on Eval.

phone LM which could recognize both in- and out-of-vocab

words. We gave an algorithm which merged graphones into

OOV words while maintaining a lattice structure. This al-

lowed creation of confusion networks containing OOV words.

These open vocabulary confusion networks provided substan-

tial accuracy improvements over baseline fixed-vocab recog-

nition. They provided small, but consistent improvements

over the best-path result of a word+graphone model. They

also allow open vocab recognition to be used in concert with

a convenient confusion network result representation.

6. REFERENCES

[1] M. Bisani and H. Ney, “Open vocabulary speech recog-
nition with flat hybrid models,” Proc. of Eurospeech, pp.
725–728, Sep. 2005.

[2] S. Deligne and F. Bimbot, “Inference of variable-length
linguistic and acoustic units by multigrams,” Speech
Communication, vol. 23, no. 3, pp. 223–241, 1997.

[3] S.F. Chen, “Conditional and Joint Models for Grapheme-
to-Phoneme Conversion,” Proc. of Eurospeech, pp.
2033–2036, Sep. 2003.

[4] M. Bisani and H. Ney, “Bootstrap estimates for confi-
dence intervals in ASR performance evaluation,” Proc.
of ICASSP, vol. 1, pp. 409–411, May 2004.

[5] L. Galescu and J. Allen, “Bi-directional conversion be-
tween graphemes and phonemes using a joint n-gram
model,” Proc. of the 4th ISCA Tutorial and Research
Workshop on Speech Synthesis, 2001.

[6] K. Vertanen, “Baseline WSJ Acoustic Models for HTK
and Sphinx: Training Recipes and Recognition Experi-
ments,” Tech. Rep., Cavendish Laboratory, 2006.

[7] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus
in speech recognition: Word error minimization and other
applications of confusion networks,” Computer Speech
and Language, vol. 14, no. 4, pp. 373–400, 2000.

[8] K. Vertanen, “Speech and speech recognition during dic-
tation corrections,” Proc. of Interspeech, Sep. 2006.

4328

