
Genetic Adventures in Parallel:
Towards a Good Island Model under PVM

Keith Vertanen
Department of Computer Science, Oregon State University

303 Dearborn Hall, Corvallis OR 97330 USA
vertanen@cs.orst.edu

Abstract

Genetic algorithms (GAs) have proved to be a very useful and flexible way to solve
difficult combinatoric problems. Arriving at high quality solution however often involves
a very large number of evaluations and consequentially is quite computationally
demanding. Evaluating GAs in parallel is thus desirable, but specialty parallel computers
are not available to many who might benefit from parallel GAs. In this paper we will
seek a parallel GA implementation under the PVM (parallel virtual machine)
environment. After looking at the various parallel models available, we will choose the
island model as the most appropriate for use with PVM. From a simplistic and inefficient
starting implementation, we will develop a better implementation that provides close to
optimal speedup.

1. Introduction

Genetic algorithms can be effectively employed to solve a variety of difficult problems.
An example of a problem that GAs are employed to solve is the job-shop scheduling
problem [8]. In the JSSP a number of jobs must be processed by a number of machines
subject to various constraints and costs. Most practical scheduling problems can be
reduced to the JSSP.

Another popular problem solved by GAs is time tabling [3]. The time table problem
involves scheduling various resources subject to a number of hard constaints that cannot
be violated. In addition, we often want to optimize a number of soft constraints that
improve the “quality” of our schedule.

These sorts of problems occur frequently in the real-world, one might want to schedule
maintenance activities during a power plant outage or schedule classes at a university.
Often the organizations wishing to solve these problems don’t have the specialized
parallel computing resources that many of the parallel GAs require. Most organizations
however do have a network of workstations available, a perfect platform for using the
PVM parallel environment.

Under the assumption that we’d like to use PVM, we will look at the various models
available for doing GAs in parallel. Once we’ve established the island model as the most
reasonable option, we will develop an efficient implementation using a freely available
C++ GA library.

In section 2 we will give a basic overview of genetic algorithms. Section 3 provides a
brief introduction to the PVM system. In section 4 we will describe the different forms of
parallelism available to GAs. Section 5 will describe the original island model software
and analyze its performance to discover its weaknesses. In section 6 we will propose a
new asynchronous software solution and describe the various design decisions made.
Section 7 gives the results attained running the new software solution.

2. Genetic Algorithms

The idea of genetic algorithms is based on the evolutionary principles developed by
Charles Darwin [4]. The first person to adapt this concept to artificial systems was
Holland [7]. We represent solutions to a problem by a collection of individuals in a
population (an individual might be a vector of values or a string of bits). We define a
function that determines the fitness of an individual. Using this fitness value, we can
choose individuals for reproduction. When individuals reproduce, their information is
combined in some manner by a crossover operator. Individuals can also undergo a
mutation, a random change in their genetic information.

The traditional genetic algorithm loop is as follows: (taken from [9])

1. Randomly initialize a population of individuals. (the first generation)
2. Evaluate each individual in the population.
3. Select parents of individuals according to some selection schemes.
4. Create new individuals by mating current individuals; apply crossover and

mutation operators.
5. Delete chosen member of the population to make room for the new

individuals.
6. Evaluate the new individuals and insert them into the population.
7. If time is up, stop and return the best individuals; if not, goto 3.

3. PVM

PVM, parallel virtual machine, is a software system to allow a network of heterogeneous
workstations to be pooled together to work on a common problem [6]. PVM is a
collaborative venture between Oak Ridge National Lab, University of Tennessee, Emory
University and Carnegie Mellon University. Since its release in 1991, PVM has become
one of the leading packages used for parallel distributed computing.

PVM provides a set of message passing functions, allowing tasks on different machines
in the PVM network to communicate. PVM supports a non-blocking send and both

blocking and non-blocking receives. The PVM communication functions insulate the
programmer from the details of data format conversion, network routing, and other
network specific details. With PVM, a programmer can develop one parallel program
and port it to virtually any unix based architecture.

4. Parallelism in Genetic Algorithms

One of the frequently cited advantages of using GAs is their “natural” parallelism.
Unfortunately the canonical version, with a global population undergoing global selection
and crossover, does not parallelize well. The problem stems from the traditional selection
algorithms such as fitness proportional, rank proportional, or truncation selection [5]. All
these methods require global calculations to take place thus incurring high
communication costs in a parallel implementation. It is possible to implement a global
GA in parallel, but often requires specialized parallel computers [1] and certainly would
be difficult to do under PVM.

Several approaches grew out of the desire to easily parallelize GAs, one is the cellular
model. The cellular model [11] seeks to exploit fine grained parallel architectures. One
individual is assigned to each processor. Selection and crossover is restricted to local
neighborhoods of a particular processor. One again this model requires specialized
massively parallel computers, not a very appropriate model for use under PVM.

The second approach is the parallel island model. The island model is designed to exploit
a coarse grained architecture. Each processor is given a population of individuals. The
processors evolve their populations using a serial GA. Periodically a processor may
migrate a number of its individuals to another population. The amount of communication
involved in the island model appears to be much more manageable than the global or
cellular models. We will choose this as our candidate for a PVM implementation.

5. Original PVM island model software

To provide a basis for our GA development, we choose the GAlib[10] software package.
GAlib is a library of C++ GA components. It provides not only simple GAs, but also an
island model GA. An example program is included that implements the parallel island
model using PVM message passing routines. It is this basic example that we use as a
starting point for our exploration.

The workings of the example program can be summarized in the following steps:

1) Master spawns a slave process for each island population
2) Slaves create population of individuals
3) Slaves evolve their populations for a number of generations dictated by master.
4) Master waits for all slaves to signal they have finished.
5) Master chooses a random slave to migrate a random number of its best
individuals to another random process.

6) Master collects populations from all slaves and compiles statistics.
7) Repeat from step 3.

The example genetic algorithm evolves a one-dimensional binary string of alternating
zeros and ones. This is a toy problem, but it will allow us to focus on the operation and
efficiency of the parallel island model under PVM rather than the details of a complicated
problem.

Our first data was obtained with the following parameters:
binary string length 2048
individuals in each population 30

 number of epochs* 50
number of generations per epoch 10
mutation probability 0.01
crossover probability 1.00

* An epoch is how many generations we allow the island process to evolve between
updates to the master (10 in this case).

The PVM virtual machine consisted of 45 HP9000 workstations. The fitness function
gives one point for every 0 bit in an even location in the string, and one point for every 1
bit in an odd location. The maximum score in our test runs would be 2048. The
populations on the slave processes used a steady state GA.

In the first experiment, the number of populations was varied from 1 to 10. The runtime
and the maximum fitness value achieved were the results tracked.

0
50

100
150
200

250
300
350

400
450

1 2 3 4 5 6 7 8 9 10

T
im

e
(s

)

Number of Populations

Figure 1
Runtime of the original software as the number of populations increases. Note that the total number of
generations is also increasing proportional to the number of populations.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 F
itn

es
s

Number of Populations

Figure 2
The maximum fitness attained as the number of populations was varied.

Both of these graphs are downright alarming. The first says that the more
populations/machines we add, the slower things get. Note that as we add populations, we
are not reducing the number of individuals or epochs. For one population, we do
50*10=500 total generations. For five populations, we do 50*10*5=2500 generations.
But with five populations, we have five machines working on the generations. Ideally it
should take the same time regardless of the number of populations. Our data is far from
this ideal, a population of ten requires seven times the processing time of a population of
one. We are gaining only a little over doing all the computations on a single machine.
We will see why it performs this badly shortly, but first let us examine the second figure.

The second graph is even more disheartening, even with more time and machines
invested in the problem, we get around the same maximum fitness value. If instead of
looking at the maximum value, we examine the average fitness of the population, we
obtain better results as shown in figure 3.

0

20

40

60

80

100

120

140

A
ve

ra
ge

 F
itn

es
s

Generation

1 Population 5 Populations 9 Populations

Figure 3
Average fitness as time progresses for three different numbers of populations.

Figure 3 shows how the average fitness of the population improves as we add more island
populations. This perhaps in some sense “better”, at least it shows improvement as the
number of populations increase. Our goal in this paper is not a thorough analysis of the
fitness performance of the island model. The island’s model ability to outperform the
serial GA has been established in other papers [2] [9].

Our main concern is why the performance degrades so noticeably as we add machines and
populations (figure 1). The slave’s code included a blocking receive in which it waited
for a command from the master. Essentially all slave tasks were being synchronized after
each epoch. After all slaves had completed their epoch, one slave was chosen to
exchange migrants with another. All other slaves had to wait for this migration to take
place. After the migration, all slaves sent their populations to the master to allow global
statistics to be generated. There seems to be quite a lot of waiting going on around here.
The slave code was instrumented to time the amount of time spent doing useful work and
the time spent on a blocking receive.

50

55

60

65

70

75

80

85

90

95

100

P
er

ce
nt

ag
e

of
 ti

m
e

w
ai

tin
g

Number of Populations

Figure 4
Average percentage of time each slave was doing a blocking receive.

Figure 4 shows that as the number of populations/machines increase, so does the
percentage of wasted time. By ten populations, the slaves are spending 95% of their time
waiting for messages. This is not surprising considering that the software is waiting to
synchronize all slaves several times per epoch.

6. New and improved PVM island model software

The following goals were outlined for an improved software solution:
1) Avoid using blocking receives
2) Minimize communication costs

3) Allow global termination condition
4) Generate global statistics about population

Goal 1 is achieved by having the slaves use only the non-blocking version of the PVM
receive function. If a message is waiting, it will be received and appropriate action taken
(namely either receiving a migration from another slave, sending a population update to
the master, or terminating). The basic methodology here is this: if nobody wants
anything from you, work on evolving your own population.

To achieve goal 2, we must find a communication efficient method for doing migration
and for updating the master’s population. In the original software, the master choose the
slaves who were to be involved in migration. We would like to leave the master out of
the decision. Towards this end, we will introduce the notion of a migration token.

When a slave posses a token, it must send out a migration of its best individuals after its
current round of evolution. If it has multiple tokens, it will send out multiple migrations
to other slaves processes. The master will send out a user specified number of migration
tokens randomly to the slaves when they are spawned. After the first round of evolution,
each slave posses as many tokens as the number of migrations it received during the
previous round.

In order for the master to determine when to stop the evolution, it must periodically
receive updates from the slaves. We will have the user specify the number of epochs
each slave should perform between sending an update message to the master. The master
can monitor the total number of generations evaluated so far and send the signal to quit
when the desired limit is reached. Note that setting this value too high can cause our
slaves to do too much work. For example, if we want 20,000 total generations and we tell
40 slaves to report every 5,000 generations, we only need the first four responses, the rest
are wasted. Conversely, setting this value too low can cause an excessive amount of
message traffic between the slaves and the master.

Achieving goals 3 and 4 while not violating goal 2 proved to be very difficult. For our
sample problem of finding a bit string of alternating 1’s and 0’s, every individual sent
over the network resulted in a 2K message. If we get carried away sending large
populations of individuals between processes, performance can degrade alarmingly as the
PVM message buffers become swamped with messages. Eventually one can even break
PVM as the buffers exceed available memory.

Evolve for gen_epoc h
generations using

steady s tate algorithm

Do w e have any
m igration tokens?

(token>0?)

Variables:
gen_epoc h Generation per epoc h
m ax_m igr Max num ber of m igrants
evals Num ber of evaluations s inc e las t update s ent
send_every How m any evaluations betw een updates
token Num ber of m igration tokens held
update_s ize Num ber of individuals s ent to update m as ter

Choose a random slave.
S end a random num ber 1 to

m ax_m igr of our best individuals
token = token - 1 .

Is there an
inc om ing

m igration?

NO

Y ES

Rec eive m igrating individuals .
Replac e our w ors t individuals

w ith m igrants .
token = token + 1

Y ES

T im e to s end
update?

(evals>send_every)

NO

Send our bes t update_s ize
individuals to the m as ter.

evals = 0

Y ES

Is m as ter
s ignalling to quit?

NO T erm inate
Y ES

Slave spawned by
m aste r

Figure 5
Flowchart of the operation of our improved slave task.

We opted to allow the user to decide how to balance their needs between good global
statistics and termination and low message overhead. Besides allowing the user to
specify how often the slaves should send population updates, the user can also specify
how many of a slaves best individuals are sent to the master. If the master is set to
terminate upon reaching a certain maximum fitness value or after a certain number of
evaluations, sending just the best individual from each slave is sufficient. If however we
wish to monitor the average fitness of all individuals in all populations, the slaves would
need to send a complete population set to the master.

In order to control the size of messages between slaves, we also introduce a user specified
maximum number of individuals to migrate (the original software choose a random
number between 1 and the size of the population). We will choose a random number of
the best individuals between 1 and this maximum value.

The only point of synchronization is upon completion of the desired number of
generations. The master signals all slaves that it is time to quit. The slaves must respond
before the master quits. This is perhaps not strictly necessary, the master could kill the
slaves without signaling. We thought it was worth incurring this small communication
penalty in order to insure a clean shutdown.

7. Results using New Software

Did we succeed in reducing waiting time and communication overhead? The new
software was run with settings attempting to approximate the behavior of the original
software. The master was told to terminate upon receiving N*10*50 generations, where
N is the number of populations (50 was the number of generations each population did in
the original run and 10 is the number of evaluations per epoch). One migration token was
introduced into the populations since in the original run only one slave would be chosen
to migrate after each epoch. The master requested population updates from the slaves
every 200 evaluations. The slaves sent their entire population (30 individuals) during
each update. The maximum number of migrants was set at 30.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
nt

 o
f

T
im

e

Number of Populations

Evolving Sending Migration
Receiving Migration Sending Population

Figure 6
Average percentage of total time each slave was spending on various tasks.

It appears we have succeeded in minimizing communication overhead for at least a small
number of populations (up to 10). The next step taken was to scale up to larger numbers
of populations (up to 45). Unfortunately, using the above settings causes us to incur a
catastrophic message traffic jam for large populations (as mentioned in section 6).

To prevent this message overload, we choose the following settings:
Migration tokens 1
Maximum migrants 5
Number of individuals sent to master 1

Other settings include:
Number of generations sought 200000
Number of epochs between sending updates 1000
Number of populations 1 to 45

All other parameters are as in the first two examples.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45

S
pe

ed
up

Number of Populations

Figure 7
Parallel speedup of our improved algorithm when compared against a single population steady state GA.

In figure 7 we compare the runtime of our parallel software against the runtime of a serial
steady state GA. Speedup is defined as the serial GA time divided by the parallel
software time. The serial GA created one population of 30 individuals and ran for
200,000 generations. The optimal speedup would be equal to the number of populations.
We achieved a linear speedup curve, but our speedups are one-third of the desired optimal
values. Our comparison with a serial steady state GA is not entirely fair. Our software is
a parallel implementation of the island model, a comparison against a serial island model
is perhaps more appropriate.

0

5

10

15

20

25

30

35

40

45

S
pe

ed
up

Number of Poplations

Optimal Improved Software

Figure 8
Parallel speedup of our improved algorithm when compared against a serial island model GA.

In figure 8 we compare the runtime of our software against the runtime of a serial island
model. We used the GADemeGA class provide by GAlib. This class evolves multiple
independent populations with a set amount of migration between all populations. As the
class performed migration every generation whereas our software migrated every 10
generations, we turned off the migration for a conservative time estimate. Our software
again shows linear speedup, this time within one-eighth of the optimal.

1760

1780

1800

1820

1840

1860

1880

1900

1920

0 5 10 15 20 25 30 35 40 45

M
ax

im
um

 fi
tn

es
s

Number of Populations

Figure 9
Maximum fitness value attained after 200,000 generations.

The final graph demonstrates that our maximum fitness value does suffer as we increase
the number of populations. The best fitness was attained using just one population. It
might be possible to improve fitness results by increasing the frequency and degree of
migration. These fitness findings are on a very trivial problem and may not hold for more
interesting problems.

8. Conclusions & Future Work

As we have seen, the parallel island model of GAs is a very good candidate for use with a
PVM network. From humble beginnings, we developed a PVM based island model
software solution based on minimizing communication overhead by utilizing fewer
messages and avoiding synchronization (except at shutdown time).

Our results show when compared to a single population serial GA, our software attains a
sub-optimal, but linear speedup. When compared against a serial island model GA, our
software attains near optimal linear speedup.

In the future, we’d like to extend our results to include a more diverse mix of processing
elements. All workstations in this paper were of the same computational power, it would
interesting to study the effects of mixing fast and slow processing elements together.

The fitness performance of the software also needs a more in-depth study using
non-trivial problems. The degree and frequency of migration could be varied to help
improve performance. Another interesting idea would be to vary the types and
parameters of the GAs running on each machine. This might promote diversity and assist
in convergence to the global maximum.

References

[1] A. Corcoran. An Overview of Parallelism in Genetic Algorithms. Technical
Report, The University of Tulsa, 1993.

[2] A. Corcoran and R. Wainwright. A Parallel Island Model Genetic Algorithm for
the Multiprocessor Scheduling Problem. Technical Report, University of Tulsa.

[3] W. Erben and J. Keppler. A Genetic Algorithm Solving a Weekly
Course-Timetabling Problem. Practice and Theory of Automated Timetabling,
First International Conference, 1996.

[4] C. Darwin. On the Origin of Species by Means of Natural Selection. Cambridge,
London, 1964. Harvard University Press (Reprint), Stuttgard, 1906 : Alfred
Knoner Verlag (German).

[5] K. De Jong and J. Sarma. On Decentralizing Selection Algorithms. Genetic
Algorithms: Proceedings of the 6th International Conference, Morgan Kaufmann,
San Francisco, CA.

[6] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam.
PVM: Parallel Virtual Machine A Users’ Guide and Tutorial for Networked
Parallel Computing. The MIT Press, Cambridge, Massachusetts, 1994.

[7] J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor,
University of Michigan Press, 1975.

[8] P. Husbands. Genetic Algorithms for Scheduling. AISB Quarterly, No. 89.

[9] G. Lin and X. Yao. Parallel Genetic Algorithm on PVM. Proceedings of the
International Conference on Parallel Algorithms, Wuhan, P.R. China.

[10] M. Wall. GAlib: A C++ Library of Genetic Algorithm Components.
Massachusetts Institute of Technology, 1996.

[11] D. Whitely. Cellular genetic algorithms. Proceedings of the Fifth International
Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, California,
1993.

